Port of phi3small (#794)

* start port of phi3small

* fix phi3

* use block sparsity

* compile activation

* nits in readme / mlx lm version
This commit is contained in:
Awni Hannun 2024-05-31 12:54:14 -07:00 committed by GitHub
parent 09aaeac72c
commit 81318ad4a8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 326 additions and 8 deletions

View File

@ -9,10 +9,10 @@ Some more useful examples are listed below.
### Text Models ### Text Models
- [MLX LM](llms/README.md) a package for LLM text generation, fine-tuning, and more.
- [Transformer language model](transformer_lm) training. - [Transformer language model](transformer_lm) training.
- Large scale text generation with [LLaMA](llms/llama), - Minimal examples of large scale text generation with [LLaMA](llms/llama),
[Mistral](llms/mistral), [Phi-2](llms/phi2), and more in the [LLMs](llms) [Mistral](llms/mistral), and more in the [LLMs](llms) directory.
directory.
- A mixture-of-experts (MoE) language model with [Mixtral 8x7B](llms/mixtral). - A mixture-of-experts (MoE) language model with [Mixtral 8x7B](llms/mixtral).
- Parameter efficient fine-tuning with [LoRA or QLoRA](lora). - Parameter efficient fine-tuning with [LoRA or QLoRA](lora).
- Text-to-text multi-task Transformers with [T5](t5). - Text-to-text multi-task Transformers with [T5](t5).
@ -21,7 +21,7 @@ Some more useful examples are listed below.
### Image Models ### Image Models
- Image classification using [ResNets on CIFAR-10](cifar). - Image classification using [ResNets on CIFAR-10](cifar).
- Generating images with [Stable Diffusion](stable_diffusion). - Generating images with [Stable Diffusion or SDXL](stable_diffusion).
- Convolutional variational autoencoder [(CVAE) on MNIST](cvae). - Convolutional variational autoencoder [(CVAE) on MNIST](cvae).
### Audio Models ### Audio Models

View File

@ -129,7 +129,7 @@ For example, to fuse and upload a model derived from Mistral-7B-v0.1, run:
```shell ```shell
mlx_lm.fuse \ mlx_lm.fuse \
--model mistralai/Mistral-7B-v0.1 \ --model mistralai/Mistral-7B-v0.1 \
--upload-repo mlx-community/my-4bit-lora-mistral \ --upload-repo mlx-community/my-lora-mistral-7b \
--hf-path mistralai/Mistral-7B-v0.1 --hf-path mistralai/Mistral-7B-v0.1
``` ```
@ -249,7 +249,7 @@ of memory. Here are some tips to reduce memory use should you need to do so:
For example, for a machine with 32 GB the following should run reasonably fast: For example, for a machine with 32 GB the following should run reasonably fast:
``` ```
python lora.py \ mlx_lm.lora \
--model mistralai/Mistral-7B-v0.1 \ --model mistralai/Mistral-7B-v0.1 \
--train \ --train \
--batch-size 1 \ --batch-size 1 \

View File

@ -0,0 +1,318 @@
from dataclasses import dataclass
from functools import partial
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
dense_attention_every_n_layers: int
ff_intermediate_size: int
gegelu_limit: float
num_hidden_layers: int
num_attention_heads: int
layer_norm_epsilon: float
vocab_size: int
num_key_value_heads: int = None
mup_attn_multiplier: float = 1.0
mup_use_scaling: bool = True
mup_embedding_multiplier: float = 10.0
mup_width_multiplier: float = 8.0
rope_embedding_base: float = 1000000
rope_position_scale: float = 1.0
blocksparse_block_size: int = (64,)
blocksparse_num_local_blocks: int = 16
blocksparse_vert_stride: int = 8
@partial(mx.compile, shapeless=True)
def gegelu_impl(a_gelu, a_linear, limit):
a_gelu = mx.where(
mx.isinf(a_gelu),
a_gelu,
mx.clip(a_gelu, a_min=None, a_max=limit),
)
a_linear = mx.where(
mx.isinf(a_linear),
a_linear,
mx.clip(a_linear, a_min=-limit, a_max=limit),
)
out_gelu = a_gelu * mx.sigmoid(1.702 * a_gelu)
return out_gelu * (a_linear + 1.0)
def gegelu(x, limit):
a_gelu, a_linear = x[..., ::2], x[..., 1::2]
return gegelu_impl(a_gelu, a_linear, limit)
class Attention(nn.Module):
def __init__(self, args: ModelArgs, layer_idx):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.n_q_per_kv = n_heads // n_kv_heads
self.head_dim = head_dim = args.hidden_size // n_heads
self.query_key_value = nn.Linear(
dim, (self.n_heads + 2 * self.n_kv_heads) * head_dim
)
self.dense = nn.Linear(dim, dim)
if args.mup_use_scaling:
norm_factor = head_dim / args.mup_attn_multiplier
else:
norm_factor = math.sqrt(head_dim)
self.scale = 1.0 / norm_factor
self.rope = nn.RoPE(
head_dim,
traditional=False,
base=args.rope_embedding_base,
scale=args.rope_position_scale,
)
if layer_idx % args.dense_attention_every_n_layers == 0:
self.block_sparse = True
self.blocksparse_block_size = args.blocksparse_block_size
if self.blocksparse_block_size not in (32, 64):
raise ValueError(
f"Unsupported block size {self.blocksparse_block_size}"
)
self.blocksparse_num_local_blocks = args.blocksparse_num_local_blocks
self.blocksparse_vert_stride = args.blocksparse_vert_stride
else:
self.block_sparse = False
def _block_sparse_mask(self, q_len, kv_len):
vert_stride = self.blocksparse_vert_stride
local_blocks = self.blocksparse_num_local_blocks
block_size = self.blocksparse_block_size
n_heads = self.n_heads
kv_blocks = (kv_len + block_size - 1) // block_size
q_blocks = (q_len + block_size - 1) // block_size
q_pos = mx.arange(kv_blocks - q_blocks, kv_blocks)[None, :, None]
k_pos = mx.arange(kv_blocks)[None, None]
mask_vert_strided = (
mx.arange(kv_blocks)[None, :] + mx.arange(1, n_heads + 1)[:, None]
) % vert_stride
mask_vert_strided = (mask_vert_strided == 0)[:, None, :]
block_mask = (q_pos >= k_pos) & (
(q_pos - k_pos < local_blocks) | mask_vert_strided
)
block_mask = block_mask.reshape(
self.n_kv_heads, self.n_q_per_kv, *block_mask.shape[-2:]
)
dense_mask = mx.repeat(
mx.repeat(block_mask, block_size, axis=-1), block_size, axis=-2
)
return block_mask, dense_mask[..., -q_len:, :kv_len]
def _block_sparse_attention(self, queries, keys, values, scale, mask):
queries = scale * queries
B = queries.shape[0]
L = queries.shape[2]
queries = mx.reshape(queries, (B, self.n_kv_heads, self.n_q_per_kv, L, -1))
keys = mx.expand_dims(keys, 2)
values = mx.expand_dims(values, 2)
# TODO get rid of dense mask if we have a fill value
block_mask, dense_mask = self._block_sparse_mask(L, keys.shape[-2])
scores = queries @ mx.swapaxes(keys, -1, -2)
# TODO, uncomment when faster
# scores = mx.block_masked_mm(
# queries,
# mx.swapaxes(keys, -1, -2),
# mask_out=block_mask,
# block_size=self.blocksparse_block_size,
# )
if mask is not None:
scores = scores + mask
scores = scores + mx.where(
dense_mask, mx.array(0, scores.dtype), mx.array(-float("inf"), scores.dtype)
)
scores = mx.softmax(scores, axis=-1, precise=True)
output = scores @ values
# TODO, uncomment when faster
# output = mx.block_masked_mm(
# scores, values, mask_lhs=block_mask, block_size=self.blocksparse_block_size
# )
return mx.reshape(output, (B, self.n_heads, L, -1))
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
qkv = self.query_key_value(x)
qkv = qkv.reshape(B, L, -1, self.n_q_per_kv + 2, self.head_dim)
queries = qkv[..., :-2, :].flatten(-3, -2)
keys = qkv[..., -2, :]
values = qkv[..., -1, :]
# Prepare the queries, keys and values for the attention computation
queries = queries.transpose(0, 2, 1, 3)
keys = keys.transpose(0, 2, 1, 3)
values = values.transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
if self.block_sparse:
output = self._block_sparse_attention(
queries, keys, values, scale=self.scale, mask=mask
)
else:
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.dense(output)
class MLP(nn.Module):
def __init__(self, args):
super().__init__()
dim = args.hidden_size
hidden_dim = args.ff_intermediate_size
self.gegelu_limit = args.gegelu_limit
self.up_proj = nn.Linear(dim, 2 * hidden_dim)
self.down_proj = nn.Linear(hidden_dim, dim)
def __call__(self, x) -> mx.array:
x = self.up_proj(x)
return self.down_proj(gegelu(x, self.gegelu_limit))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs, layer_idx):
super().__init__()
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args, layer_idx)
self.mlp = MLP(args)
self.input_layernorm = nn.LayerNorm(
args.hidden_size, eps=args.layer_norm_epsilon
)
self.post_attention_layernorm = nn.LayerNorm(
args.hidden_size,
eps=args.layer_norm_epsilon,
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class Phi3Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.mup_embedding_multiplier = args.mup_embedding_multiplier
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args, layer_idx=l)
for l in range(args.num_hidden_layers)
]
self.final_layernorm = nn.LayerNorm(
args.hidden_size, eps=args.layer_norm_epsilon
)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
if self.mup_embedding_multiplier:
h = self.mup_embedding_multiplier * h
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.final_layernorm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.model = Phi3Model(args)
self.args = args
self.mup_width_multiplier = args.mup_width_multiplier
self._dummy_tokenizer_ids = mx.array(
[100256, 100258, 100259, 100260, 100264, 100265]
+ list(range(100267, 100352))
)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
out = self.model.embed_tokens.as_linear(out)
if self.mup_width_multiplier:
out = out / self.mup_width_multiplier
out[self._dummy_tokenizer_ids] = -float("inf")
return out
@property
def layers(self):
return self.model.layers
@property
def head_dim(self):
return self.args.hidden_size // self.args.num_attention_heads
def sanitize(self, weights):
# Remove unused precomputed rotary freqs
return {
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
}
@property
def n_kv_heads(self):
return self.args.num_key_value_heads

View File

@ -1,4 +1,4 @@
mlx>=0.14 mlx>=0.14.1
numpy numpy
transformers>=4.39.3 transformers>=4.39.3
protobuf protobuf

View File

@ -1,3 +1,3 @@
# Copyright © 2023-2024 Apple Inc. # Copyright © 2023-2024 Apple Inc.
__version__ = "0.14.0" __version__ = "0.14.1"