Add Starcoder 2 (#502)

* Add Starcoder2 model and update utils.py

* Refactor model arguments and modules in starcoder2.py

* Refactor FeedForward class to MLP in starcoder2.py

* Fix typo

* pre-commit

* Refactor starcoder2.py: Update model arguments and modules

* Fix LM head and MLP layers

* Rename  input layer norm

* Update bias in linear layers

* Refactor token embeddings in Starcoder2Model

* Rename to standard HF attention layer name

* Add LayerNorm

* Add transposed token embeddings (like in Gemma)

* Refactor MLP and TransformerBlock classes

* Add tie_word_embeddings option to ModelArgs and update Model implementation

* Add conditional check for tying word embeddings in Starcoder2Model

* Fix bias in lm_head linear layer

* Remove unused LayerNorm in stablelm

* Update transformers dependency to use GitHub repository

* fix lm head bug, revert transformer req

* Update RoPE initialization in Attention class

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Muhtasham Oblokulov 2024-03-03 04:39:23 +01:00 committed by GitHub
parent 5b1043a458
commit 81e2a80026
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 191 additions and 2 deletions

View File

@ -46,7 +46,7 @@ You can convert models in the Python API with:
```python ```python
from mlx_lm import convert from mlx_lm import convert
upload_repo = "mistralai/Mistral-7B-Instruct-v0.1" upload_repo = "mlx-community/My-Mistral-7B-v0.1-4bit"
convert("mistralai/Mistral-7B-v0.1", quantize=True, upload_repo=upload_repo) convert("mistralai/Mistral-7B-v0.1", quantize=True, upload_repo=upload_repo)
``` ```

View File

@ -128,7 +128,6 @@ class DecoderLayer(nn.Module):
def __init__(self, config: ModelArgs): def __init__(self, config: ModelArgs):
super().__init__() super().__init__()
self.self_attn = Attention(config=config) self.self_attn = Attention(config=config)
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = MLP(config.hidden_size, config.intermediate_size) self.mlp = MLP(config.hidden_size, config.intermediate_size)
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = LayerNorm( self.post_attention_layernorm = LayerNorm(

View File

@ -0,0 +1,189 @@
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
from .layers import LayerNorm
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
num_key_value_heads: int = None
max_position_embeddings: int = 16384
norm_eps: float = None
rms_norm_eps: float = 1e-5
norm_type: str = "layer_norm"
vocab_size: int = 49152
rope_theta: float = 100000
tie_word_embeddings: bool = True
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.norm_eps is None:
self.norm_eps = self.rms_norm_eps
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.repeats = self.n_heads // self.n_kv_heads
head_dim = args.hidden_size // args.num_attention_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=True)
self.rope = nn.RoPE(head_dim, traditional=False, base=args.rope_theta)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
return a.reshape([B, self.n_heads, L, -1])
if self.repeats > 1:
keys, values = map(repeat, (keys, values))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.c_fc = nn.Linear(dim, hidden_dim, bias=True)
self.c_proj = nn.Linear(hidden_dim, dim, bias=True)
def __call__(self, x):
return self.c_proj(nn.gelu(self.c_fc(x)))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.n_heads = args.num_attention_heads
self.self_attn = Attention(args)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.input_layernorm = LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = LayerNorm(
args.hidden_size, eps=args.rms_norm_eps
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out, cache
class Starcoder2Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.norm(h), cache
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model = Starcoder2Model(args)
# This is for 15B starcoder2 since it doesn't tie word embeddings
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out, cache = self.model(inputs, cache)
if not self.model.args.tie_word_embeddings:
return self.lm_head(out), cache
else:
out = out @ self.model.embed_tokens.weight.T
return out, cache
@property
def layers(self):
return self.model.layers

View File

@ -32,6 +32,7 @@ def linear_to_lora_layers(model: nn.Module, num_lora_layers: int):
"stablelm", "stablelm",
"qwen2", "qwen2",
"gemma", "gemma",
"starcoder2",
]: ]:
check_lora_layers(len(model.model.layers)) check_lora_layers(len(model.model.layers))