mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
Quantized KV Cache (#1075)
* add QuantizedKVCache * simplify * add tests * single sdpa function * fix sed * in place * fix tests * support different k and v head dims
This commit is contained in:
parent
9f34fdbda4
commit
85ffd2c96a
@ -8,7 +8,9 @@ import time
|
||||
import mlx.core as mx
|
||||
|
||||
from .models.cache import make_prompt_cache, save_prompt_cache
|
||||
from .utils import load
|
||||
from .utils import load, maybe_quantize_kv_cache
|
||||
|
||||
DEFAULT_QUANTIZED_KV_START = 5000
|
||||
|
||||
|
||||
def setup_arg_parser():
|
||||
@ -70,6 +72,26 @@ def setup_arg_parser():
|
||||
required=True,
|
||||
help="Message to be processed by the model ('-' reads from stdin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-bits",
|
||||
type=int,
|
||||
help="Number of bits for KV cache quantization. "
|
||||
"Defaults to no quantization.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-group-size",
|
||||
type=int,
|
||||
help="Group size for KV cache quantization.",
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quantized-kv-start",
|
||||
help="When --kv-bits is set, start quantizing the KV cache "
|
||||
"from this step onwards.",
|
||||
type=int,
|
||||
default=DEFAULT_QUANTIZED_KV_START,
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -127,6 +149,7 @@ def main():
|
||||
start = time.time()
|
||||
max_msg_len = 0
|
||||
while y.size > 0:
|
||||
|
||||
model(y[:step_size][None], cache=cache)
|
||||
mx.eval([c.state for c in cache])
|
||||
processed += min(y.size, step_size)
|
||||
@ -136,6 +159,11 @@ def main():
|
||||
msg = f"\rProcessed {processed:6d} tokens ({speed:6.2f} tok/s)"
|
||||
max_msg_len = max(max_msg_len, len(msg))
|
||||
print(msg + " " * (max_msg_len - len(msg)), end="", flush=True)
|
||||
|
||||
maybe_quantize_kv_cache(
|
||||
cache, args.quantized_kv_start, args.kv_group_size, args.kv_bits
|
||||
)
|
||||
|
||||
print()
|
||||
print(f"Peak memory: {mx.metal.get_peak_memory() / 2**30:.3f} GB")
|
||||
|
||||
|
@ -6,7 +6,7 @@ import sys
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
from .models.cache import load_prompt_cache
|
||||
from .models.cache import QuantizedKVCache, load_prompt_cache
|
||||
from .utils import generate, load
|
||||
|
||||
DEFAULT_PROMPT = "hello"
|
||||
@ -15,6 +15,7 @@ DEFAULT_TEMP = 0.0
|
||||
DEFAULT_TOP_P = 1.0
|
||||
DEFAULT_SEED = 0
|
||||
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
DEFAULT_QUANTIZED_KV_START = 5000
|
||||
|
||||
|
||||
def str2bool(string):
|
||||
@ -107,6 +108,26 @@ def setup_arg_parser():
|
||||
default=None,
|
||||
help="A file containing saved KV caches to avoid recomputing them",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-bits",
|
||||
type=int,
|
||||
help="Number of bits for KV cache quantization. "
|
||||
"Defaults to no quantization.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-group-size",
|
||||
type=int,
|
||||
help="Group size for KV cache quantization.",
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quantized-kv-start",
|
||||
help="When --kv-bits is set, start quantizing the KV cache "
|
||||
"from this step onwards.",
|
||||
type=int,
|
||||
default=DEFAULT_QUANTIZED_KV_START,
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -150,8 +171,18 @@ def main():
|
||||
using_cache = args.prompt_cache_file is not None
|
||||
if using_cache:
|
||||
prompt_cache, metadata = load_prompt_cache(
|
||||
args.prompt_cache_file, return_metadata=True
|
||||
args.prompt_cache_file,
|
||||
return_metadata=True,
|
||||
)
|
||||
if isinstance(prompt_cache[0], QuantizedKVCache):
|
||||
if args.kv_bits is not None and args.kv_bits != prompt_cache[0].bits:
|
||||
raise ValueError(
|
||||
"--kv-bits does not match the kv cache loaded from --prompt-cache-file."
|
||||
)
|
||||
if args.kv_group_size != prompt_cache[0].group_size:
|
||||
raise ValueError(
|
||||
"--kv-group-size does not match the kv cache loaded from --prompt-cache-file."
|
||||
)
|
||||
|
||||
# Building tokenizer_config
|
||||
tokenizer_config = (
|
||||
@ -227,6 +258,9 @@ def main():
|
||||
top_p=args.top_p,
|
||||
max_kv_size=args.max_kv_size,
|
||||
prompt_cache=prompt_cache if using_cache else None,
|
||||
kv_bits=args.kv_bits,
|
||||
kv_group_size=args.kv_group_size,
|
||||
quantized_kv_start=args.quantized_kv_start,
|
||||
)
|
||||
if not args.verbose:
|
||||
print(response)
|
||||
|
@ -5,6 +5,9 @@ from dataclasses import dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_map
|
||||
|
||||
from .cache import QuantizedKVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -48,3 +51,63 @@ def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
|
||||
else:
|
||||
mask = None
|
||||
return mask
|
||||
|
||||
|
||||
def quantized_scaled_dot_product_attention(
|
||||
queries: mx.array,
|
||||
q_keys: tuple[mx.array, mx.array, mx.array],
|
||||
q_values: tuple[mx.array, mx.array, mx.array],
|
||||
scale: float,
|
||||
mask: Optional[mx.array],
|
||||
group_size: int = 64,
|
||||
bits: int = 8,
|
||||
) -> mx.array:
|
||||
B, n_q_heads, L, D = queries.shape
|
||||
n_kv_heads = q_keys[0].shape[-3]
|
||||
n_repeats = n_q_heads // n_kv_heads
|
||||
|
||||
queries *= scale
|
||||
|
||||
if n_repeats > 1:
|
||||
queries = mx.reshape(queries, (B, n_kv_heads, n_repeats, L, D))
|
||||
q_keys = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_keys)
|
||||
q_values = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_values)
|
||||
|
||||
scores = mx.quantized_matmul(
|
||||
queries, *q_keys, transpose=True, group_size=group_size, bits=bits
|
||||
)
|
||||
if mask is not None:
|
||||
scores += mask
|
||||
scores = mx.softmax(scores, axis=-1, precise=True)
|
||||
out = mx.quantized_matmul(
|
||||
scores, *q_values, transpose=False, group_size=group_size, bits=bits
|
||||
)
|
||||
|
||||
if n_repeats > 1:
|
||||
out = mx.reshape(out, (B, n_q_heads, L, D))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def scaled_dot_product_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
cache,
|
||||
scale: float,
|
||||
mask: Optional[mx.array],
|
||||
) -> mx.array:
|
||||
if isinstance(cache, QuantizedKVCache):
|
||||
return quantized_scaled_dot_product_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
scale=scale,
|
||||
mask=mask,
|
||||
group_size=cache.group_size,
|
||||
bits=cache.bits,
|
||||
)
|
||||
else:
|
||||
return mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=scale, mask=mask
|
||||
)
|
||||
|
@ -4,10 +4,13 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def make_prompt_cache(model: nn.Module, max_kv_size: Optional[int] = None) -> List[Any]:
|
||||
def make_prompt_cache(
|
||||
model: nn.Module,
|
||||
max_kv_size: Optional[int] = None,
|
||||
) -> List[Any]:
|
||||
"""
|
||||
Construct the model's cache for use when cgeneration.
|
||||
|
||||
@ -126,6 +129,88 @@ class _BaseCache:
|
||||
return False
|
||||
|
||||
|
||||
class QuantizedKVCache(_BaseCache):
|
||||
def __init__(self, group_size: int = 64, bits: int = 8):
|
||||
self.keys = None
|
||||
self.values = None
|
||||
self.offset = 0
|
||||
self.step = 256
|
||||
self.group_size = group_size
|
||||
self.bits = bits
|
||||
|
||||
def update_and_fetch(self, keys, values):
|
||||
B, n_kv_heads, num_steps, k_head_dim = keys.shape
|
||||
v_head_dim = values.shape[-1]
|
||||
prev = self.offset
|
||||
|
||||
if self.keys is None or (prev + num_steps) > self.keys[0].shape[-2]:
|
||||
el_per_int = 8 * mx.uint32.size // self.bits
|
||||
new_steps = (self.step + num_steps - 1) // self.step * self.step
|
||||
shape = (B, n_kv_heads, new_steps)
|
||||
|
||||
def init_quant(dim):
|
||||
return (
|
||||
mx.zeros((*shape, dim // el_per_int), dtype=mx.uint32),
|
||||
mx.zeros((*shape, dim // self.group_size), dtype=keys.dtype),
|
||||
mx.zeros((*shape, dim // self.group_size), dtype=keys.dtype),
|
||||
)
|
||||
|
||||
def expand_quant(x):
|
||||
new_x = mx.zeros((*shape, x.shape[-1]), dtype=x.dtype)
|
||||
return mx.concatenate([x, new_x], axis=-2)
|
||||
|
||||
if self.keys is not None:
|
||||
if prev % self.step != 0:
|
||||
self.keys, self.values = tree_map(
|
||||
lambda x: x[..., :prev, :], (self.keys, self.values)
|
||||
)
|
||||
|
||||
self.keys, self.values = tree_map(
|
||||
expand_quant, (self.keys, self.values)
|
||||
)
|
||||
else:
|
||||
self.keys, self.values = init_quant(k_head_dim), init_quant(v_head_dim)
|
||||
|
||||
self.offset += num_steps
|
||||
|
||||
keys = mx.quantize(keys, group_size=self.group_size, bits=self.bits)
|
||||
values = mx.quantize(values, group_size=self.group_size, bits=self.bits)
|
||||
for i in range(len(self.keys)):
|
||||
self.keys[i][..., prev : self.offset, :] = keys[i]
|
||||
self.values[i][..., prev : self.offset, :] = values[i]
|
||||
|
||||
return tree_map(lambda x: x[..., : self.offset, :], (self.keys, self.values))
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
if self.offset == self.keys[0].shape[2]:
|
||||
return self.keys, self.values
|
||||
else:
|
||||
return tree_map(
|
||||
lambda x: x[..., : self.offset, :], (self.keys, self.values)
|
||||
)
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
self.keys, self.values = v
|
||||
|
||||
@property
|
||||
def meta_state(self):
|
||||
return tuple(map(str, (self.step, self.offset, self.group_size, self.bits)))
|
||||
|
||||
@meta_state.setter
|
||||
def meta_state(self, v):
|
||||
self.step, self.offset, self.group_size, self.bits = map(int, v)
|
||||
|
||||
def is_trimmable(self):
|
||||
return True
|
||||
|
||||
def trim(self, n):
|
||||
n = min(self.offset, n)
|
||||
self.offset -= n
|
||||
return n
|
||||
|
||||
|
||||
class KVCache(_BaseCache):
|
||||
def __init__(self):
|
||||
self.keys = None
|
||||
@ -180,6 +265,16 @@ class KVCache(_BaseCache):
|
||||
self.offset -= n
|
||||
return n
|
||||
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4) -> QuantizedKVCache:
|
||||
quant_cache = QuantizedKVCache(group_size=group_size, bits=bits)
|
||||
quant_cache.offset = self.offset
|
||||
if self.keys is not None:
|
||||
quant_cache.keys = mx.quantize(self.keys, group_size=group_size, bits=bits)
|
||||
quant_cache.values = mx.quantize(
|
||||
self.values, group_size=group_size, bits=bits
|
||||
)
|
||||
return quant_cache
|
||||
|
||||
|
||||
class RotatingKVCache(_BaseCache):
|
||||
|
||||
@ -320,6 +415,9 @@ class RotatingKVCache(_BaseCache):
|
||||
self._idx -= n
|
||||
return n
|
||||
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4) -> QuantizedKVCache:
|
||||
raise NotImplementedError("RotatingKVCache Quantization NYI")
|
||||
|
||||
|
||||
class MambaCache(_BaseCache):
|
||||
def __init__(self):
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Optional, Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -93,8 +93,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -7,7 +7,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -74,8 +74,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.out_proj(output)
|
||||
|
@ -4,7 +4,7 @@ from typing import Any, Dict, Optional
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@ -97,8 +97,8 @@ class DeepseekAttention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -7,7 +7,7 @@ from typing import Any, Dict, Optional, Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@ -235,8 +235,8 @@ class DeepseekV2Attention(nn.Module):
|
||||
|
||||
queries = mx.concatenate([q_nope, q_pe], axis=-1)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Optional, Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -79,8 +79,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -7,7 +7,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -61,8 +61,8 @@ class Attention(nn.Module):
|
||||
if cache is not None:
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -7,7 +7,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -74,8 +74,8 @@ class Attention(nn.Module):
|
||||
if cache is not None:
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.c_proj(output)
|
||||
|
@ -7,7 +7,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
# Based on the transformers implementation at:
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
||||
@ -79,8 +79,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Dict, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -141,8 +141,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.wo(output)
|
||||
|
@ -1,12 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -190,9 +190,10 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
@ -7,7 +7,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -105,8 +105,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
attn_output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
attn_output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -7,7 +7,7 @@ from typing import Any, Dict, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@ -87,8 +87,8 @@ class MixtralAttention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -7,7 +7,7 @@ from typing import Any, Dict, Optional, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -113,8 +113,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -107,8 +107,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -7,7 +7,7 @@ from typing import Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -93,8 +93,13 @@ class PhiAttention(nn.Module):
|
||||
keys = self.rope(keys)
|
||||
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries.astype(mx.float32), keys, values, scale=scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries.astype(mx.float32),
|
||||
keys,
|
||||
values,
|
||||
cache=cache,
|
||||
scale=scale,
|
||||
mask=mask,
|
||||
).astype(values.dtype)
|
||||
|
||||
output = output.moveaxis(2, 1).reshape(B, L, -1)
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .su_rope import SuScaledRotaryEmbedding
|
||||
|
||||
|
||||
@ -107,8 +107,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -8,7 +8,7 @@ from typing import Any, Optional
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -188,8 +188,8 @@ class Attention(nn.Module):
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
else:
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.dense(output)
|
||||
|
@ -6,7 +6,7 @@ from typing import Dict, List, Optional, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .su_rope import SuScaledRotaryEmbedding
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
@ -79,8 +79,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -8,7 +8,7 @@ from typing import Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import create_attention_mask
|
||||
from .base import create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchMLP
|
||||
|
||||
|
||||
@ -71,8 +71,13 @@ class RoPEAttention(nn.Module):
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries.astype(mx.float32), keys, values, scale=scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries.astype(mx.float32),
|
||||
keys,
|
||||
values,
|
||||
cache=cache,
|
||||
scale=scale,
|
||||
mask=mask,
|
||||
).astype(values.dtype)
|
||||
output = output.moveaxis(2, 1).reshape(B, L, -1)
|
||||
|
||||
|
@ -7,7 +7,7 @@ import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -92,10 +92,11 @@ class Attention(nn.Module):
|
||||
keys = mx.tile(keys, [1, self.config.n_shared_head, 1, 1])
|
||||
values = mx.tile(values, [1, self.config.n_shared_head, 1, 1])
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
output = scaled_dot_product_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
cache=cache,
|
||||
scale=self.scale,
|
||||
mask=attention_mask,
|
||||
)
|
||||
|
@ -5,7 +5,7 @@ from dataclasses import dataclass
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -64,8 +64,8 @@ class Attention(nn.Module):
|
||||
queries = self.rotary_emb(queries)
|
||||
keys = self.rotary_emb(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Dict, Optional, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -89,8 +89,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -7,7 +7,7 @@ from typing import Any, Dict, Optional, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@ -89,8 +89,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -7,7 +7,7 @@ from typing import List, Literal, Optional
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .cache import MambaCache, RotatingKVCache
|
||||
|
||||
|
||||
@ -263,8 +263,8 @@ class LocalAttentionBlock(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -6,7 +6,7 @@ from dataclasses import dataclass
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -120,8 +120,8 @@ class Attention(nn.Module):
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=scale, mask=mask
|
||||
).astype(values.dtype)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
@ -6,7 +6,7 @@ from typing import Any, Optional
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -64,8 +64,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
@ -19,7 +19,7 @@ from mlx.utils import tree_flatten, tree_reduce
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
# Local imports
|
||||
from .models import base, cache
|
||||
from .models import cache
|
||||
from .sample_utils import categorical_sampling, min_p_sampling, top_p_sampling
|
||||
from .tokenizer_utils import TokenizerWrapper, load_tokenizer
|
||||
from .tuner.utils import dequantize as dequantize_model
|
||||
@ -159,6 +159,18 @@ def apply_repetition_penalty(logits: mx.array, tokens: mx.array, penalty: float)
|
||||
return logits
|
||||
|
||||
|
||||
def maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits):
|
||||
if (
|
||||
kv_bits is not None
|
||||
and not isinstance(prompt_cache[0], cache.QuantizedKVCache)
|
||||
and prompt_cache[0].offset > quantized_kv_start
|
||||
):
|
||||
for i in range(len(prompt_cache)):
|
||||
prompt_cache[i] = prompt_cache[i].to_quantized(
|
||||
group_size=kv_group_size, bits=kv_bits
|
||||
)
|
||||
|
||||
|
||||
def generate_step(
|
||||
prompt: mx.array,
|
||||
model: nn.Module,
|
||||
@ -173,6 +185,9 @@ def generate_step(
|
||||
prompt_cache: Optional[Any] = None,
|
||||
logit_bias: Optional[Dict[int, float]] = None,
|
||||
logits_processor: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
|
||||
kv_bits: Optional[int] = None,
|
||||
kv_group_size: int = 64,
|
||||
quantized_kv_start: int = 0,
|
||||
) -> Generator[Tuple[mx.array, mx.array], None, None]:
|
||||
"""
|
||||
A generator producing token ids based on the given prompt from the model.
|
||||
@ -201,6 +216,11 @@ def generate_step(
|
||||
logits_processor (List[Callable[[mx.array, mx.array], mx.array]], optional):
|
||||
A list of functions that take tokens and logits and return the processed
|
||||
logits. Default: ``None``.
|
||||
kv_bits (int, optional): Number of bits to use for KV cache quantization.
|
||||
None implies no cache quantization. Default: ``None``.
|
||||
kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
|
||||
quantized_kv_start (int): Step to begin using a quantized KV cache.
|
||||
when ``kv_bits`` is non-None. Default: ``0``.
|
||||
|
||||
Yields:
|
||||
Generator[Tuple[mx.array, mx.array], None, None]: A generator producing
|
||||
@ -255,11 +275,15 @@ def generate_step(
|
||||
|
||||
# Create the KV cache for generation
|
||||
if prompt_cache is None:
|
||||
prompt_cache = cache.make_prompt_cache(model, max_kv_size)
|
||||
prompt_cache = cache.make_prompt_cache(
|
||||
model,
|
||||
max_kv_size=max_kv_size,
|
||||
)
|
||||
elif len(prompt_cache) != len(model.layers):
|
||||
raise ValueError("Wrong number of layers in the prompt cache.")
|
||||
|
||||
def _step(y):
|
||||
|
||||
logits = model(y[None], cache=prompt_cache)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
@ -270,6 +294,10 @@ def generate_step(
|
||||
for processor in logits_processor:
|
||||
logits = processor(tokens, logits)
|
||||
|
||||
maybe_quantize_kv_cache(
|
||||
prompt_cache, quantized_kv_start, kv_group_size, kv_bits
|
||||
)
|
||||
|
||||
y, logprobs = sample(logits)
|
||||
return y, logprobs.squeeze(0)
|
||||
|
||||
|
@ -9,6 +9,7 @@ import mlx.core as mx
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
MambaCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
load_prompt_cache,
|
||||
make_prompt_cache,
|
||||
@ -186,6 +187,18 @@ class TestPromptCache(unittest.TestCase):
|
||||
num_trimmed = trim_prompt_cache(cache, 4)
|
||||
self.assertEqual(num_trimmed, 0)
|
||||
|
||||
cache = [QuantizedKVCache() for _ in range(2)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 64))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
num_trimmed = trim_prompt_cache(cache, 7)
|
||||
self.assertEqual(num_trimmed, 7)
|
||||
|
||||
# Trim more tokens than remain
|
||||
num_trimmed = trim_prompt_cache(cache, 4)
|
||||
self.assertEqual(num_trimmed, 3)
|
||||
|
||||
def test_trim_cache_with_generate(self):
|
||||
model, tokenizer = load(HF_MODEL_PATH)
|
||||
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
|
||||
@ -238,6 +251,56 @@ class TestPromptCache(unittest.TestCase):
|
||||
self.assertTrue(mx.allclose(old_cache[0].keys[..., 10:11, :], y))
|
||||
self.assertTrue(mx.allclose(cache[0].keys[..., 10:11, :], z))
|
||||
|
||||
def test_save_load_quantized_cache(self):
|
||||
cache = [QuantizedKVCache(bits=4, group_size=32) for _ in range(4)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 32))
|
||||
c.update_and_fetch(x, x)
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
save_prompt_cache(cache_file, cache)
|
||||
loaded_cache = load_prompt_cache(cache_file)
|
||||
self.assertTrue(loaded_cache[0].bits == cache[0].bits)
|
||||
self.assertTrue(loaded_cache[0].group_size == cache[0].group_size)
|
||||
self.assertTrue(len(cache), len(loaded_cache))
|
||||
for c, lc in zip(cache, loaded_cache):
|
||||
self.assertEqual(c.offset, lc.offset)
|
||||
# Loop over quantized tuple
|
||||
for i in range(3):
|
||||
self.assertTrue(mx.array_equal(c.state[0][i], lc.state[0][i]))
|
||||
self.assertTrue(mx.array_equal(c.state[1][i], lc.state[1][i]))
|
||||
|
||||
# Test with metadata
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
metadata = {"a": "b", "c": "d"}
|
||||
save_prompt_cache(cache_file, cache, metadata)
|
||||
_, loaded_metadata = load_prompt_cache(cache_file, return_metadata=True)
|
||||
self.assertEqual(metadata, loaded_metadata)
|
||||
|
||||
def test_cache_to_quantized(self):
|
||||
model, tokenizer = load(HF_MODEL_PATH)
|
||||
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
|
||||
results = zip(range(4), generate_step(prompt, model))
|
||||
toks, all_logits = zip(*(r[1] for r in results))
|
||||
|
||||
prompt_cache = make_prompt_cache(model)
|
||||
i = 0
|
||||
for _, (tok, logits) in zip(
|
||||
range(2), generate_step(prompt, model, prompt_cache=prompt_cache)
|
||||
):
|
||||
self.assertEqual(tok, toks[i])
|
||||
self.assertTrue(mx.allclose(logits, all_logits[i]))
|
||||
i += 1
|
||||
|
||||
prompt_cache = [c.to_quantized(bits=8, group_size=32) for c in prompt_cache]
|
||||
|
||||
for _, (tok, logits) in zip(
|
||||
range(1),
|
||||
generate_step(mx.array([toks[i]]), model, prompt_cache=prompt_cache),
|
||||
):
|
||||
i += 1
|
||||
self.assertEqual(tok, toks[i])
|
||||
self.assertTrue(mx.allclose(logits, all_logits[i], rtol=1e-2))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user