From 8801beb66f61d16114d4014fec32a266778e4481 Mon Sep 17 00:00:00 2001 From: Awni Hannun Date: Mon, 2 Dec 2024 11:42:58 -0800 Subject: [PATCH] Add olmo2 (#1128) * add olmo2 * add olmo2 --- llms/mlx_lm/models/olmo2.py | 312 ++++++++++++++++++++++++++++++++++++ llms/mlx_lm/tuner/utils.py | 1 + llms/tests/test_models.py | 20 +++ 3 files changed, 333 insertions(+) create mode 100644 llms/mlx_lm/models/olmo2.py diff --git a/llms/mlx_lm/models/olmo2.py b/llms/mlx_lm/models/olmo2.py new file mode 100644 index 00000000..a28fdcc1 --- /dev/null +++ b/llms/mlx_lm/models/olmo2.py @@ -0,0 +1,312 @@ +# Copyright © 2023-2024 Apple Inc. + +from dataclasses import dataclass +from typing import Any, Dict, Optional, Union + +import mlx.core as mx +import mlx.nn as nn + +from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + hidden_size: int + num_hidden_layers: int + intermediate_size: int + num_attention_heads: int + rms_norm_eps: float + vocab_size: int + head_dim: Optional[int] = None + max_position_embeddings: Optional[int] = None + num_key_value_heads: Optional[int] = None + attention_bias: bool = False + mlp_bias: bool = False + rope_theta: float = 10000 + rope_traditional: bool = False + rope_scaling: Optional[Dict[str, Union[float, str]]] = None + tie_word_embeddings: bool = True + + def __post_init__(self): + if self.num_key_value_heads is None: + self.num_key_value_heads = self.num_attention_heads + + if self.rope_scaling: + if not "factor" in self.rope_scaling: + raise ValueError(f"rope_scaling must contain 'factor'") + rope_type = self.rope_scaling.get("type") or self.rope_scaling.get( + "rope_type" + ) + if rope_type is None: + raise ValueError( + f"rope_scaling must contain either 'type' or 'rope_type'" + ) + if rope_type not in ["linear", "dynamic", "llama3"]: + raise ValueError( + "rope_scaling 'type' currently only supports 'linear', 'dynamic' or 'llama3'" + ) + + +class DynamicNTKScalingRoPE(nn.Module): + """Implements the rotary positional encoding with Dynamic NTK scaling and Llama 3 RoPE.""" + + def __init__( + self, + dims: int, + max_position_embeddings: int = 2048, + traditional: bool = False, + base: float = 10000, + scale: float = 1.0, + rope_type: str = "default", + rope_scaling: dict = None, + ): + super().__init__() + self.dims = dims + self.max_position_embeddings = max_position_embeddings + self.traditional = traditional + self.scale = scale + self.rope_type = rope_type + self.rope_scaling = rope_scaling + self.base = base + self.compute_freqs() + + def compute_freqs(self): + if self.rope_type != "llama3": + self._freqs = None + return + factor = self.rope_scaling["factor"] + low_freq_factor = self.rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = self.rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.rope_scaling.get( + "original_max_position_embeddings", + 8192, + ) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + + freqs = self.base ** (mx.arange(0, self.dims, 2) / self.dims) + wavelens = 2 * mx.pi * freqs + + freqs = mx.where(wavelens > low_freq_wavelen, freqs * factor, freqs) + is_medium_freq = (wavelens > high_freq_wavelen) & (wavelens < low_freq_wavelen) + smooth_factors = (old_context_len / wavelens - low_freq_factor) / ( + high_freq_factor - low_freq_factor + ) + smooth_freqs = freqs / ((1 - smooth_factors) / factor + smooth_factors) + self._freqs = mx.where(is_medium_freq, smooth_freqs, freqs) + self.base = None + + def extra_repr(self): + return ( + f"{self.dims}, traditional={self.traditional}, " + f"max_position_embeddings={self.max_position_embeddings}, " + f"scaling_factor={self.scale}, rope_type={self.rope_type}" + ) + + def __call__(self, x, offset: int = 0): + return mx.fast.rope( + x, + self.dims, + traditional=self.traditional, + base=self.base, + scale=self.scale, + offset=offset, + freqs=self._freqs, + ) + + +def initialize_rope(args: ModelArgs): + head_dim = args.head_dim or args.hidden_size // args.num_attention_heads + + rope_scaling = args.rope_scaling + rope_type = "default" + rope_scale = 1.0 + + if rope_scaling is not None: + rope_type = ( + rope_scaling.get("type") or rope_scaling.get("rope_type") or "default" + ) + if rope_type == "linear": + rope_scale = 1 / rope_scaling["factor"] + elif rope_type == "llama3": + rope_scale = 1.0 # The scaling is handled internally for llama3 + + return DynamicNTKScalingRoPE( + dims=head_dim, + max_position_embeddings=args.max_position_embeddings, + traditional=args.rope_traditional, + base=args.rope_theta, + scale=rope_scale, + rope_type=rope_type, + rope_scaling=rope_scaling, + ) + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + self.n_heads = n_heads = args.num_attention_heads + self.n_kv_heads = n_kv_heads = args.num_key_value_heads + + self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads + + self.scale = head_dim**-0.5 + if hasattr(args, "attention_bias"): + attention_bias = args.attention_bias + else: + attention_bias = False + + self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias) + self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias) + self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias) + self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias) + + self.rope = initialize_rope(args) + self.q_norm = nn.RMSNorm(n_heads * head_dim, args.rms_norm_eps) + self.k_norm = nn.RMSNorm(n_kv_heads * head_dim, args.rms_norm_eps) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + B, L, D = x.shape + + queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) + queries = self.q_norm(queries) + keys = self.k_norm(keys) + + # Prepare the queries, keys and values for the attention computation + queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + + if cache is not None: + queries = self.rope(queries, offset=cache.offset) + keys = self.rope(keys, offset=cache.offset) + keys, values = cache.update_and_fetch(keys, values) + else: + queries = self.rope(queries) + keys = self.rope(keys) + + output = scaled_dot_product_attention( + queries, keys, values, cache=cache, scale=self.scale, mask=mask + ) + + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.o_proj(output) + + +class MLP(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + hidden_dim = args.intermediate_size + if hasattr(args, "mlp_bias"): + mlp_bias = args.mlp_bias + else: + mlp_bias = False + + self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias) + self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias) + self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias) + + def __call__(self, x) -> mx.array: + return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.num_attention_heads = args.num_attention_heads + self.hidden_size = args.hidden_size + self.self_attn = Attention(args) + self.mlp = MLP(args) + self.post_attention_layernorm = nn.RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + self.post_feedforward_layernorm = nn.RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + self.args = args + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + r = self.post_attention_layernorm(self.self_attn(x, mask, cache)) + h = x + r + r = self.post_feedforward_layernorm(self.mlp(h)) + out = h + r + return out + + +class LlamaModel(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.vocab_size = args.vocab_size + self.num_hidden_layers = args.num_hidden_layers + assert self.vocab_size > 0 + self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) + self.layers = [ + TransformerBlock(args=args) for _ in range(args.num_hidden_layers) + ] + self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + h = self.embed_tokens(inputs) + + mask = create_attention_mask(h, cache) + + if cache is None: + cache = [None] * len(self.layers) + + for layer, c in zip(self.layers, cache): + h = layer(h, mask, cache=c) + + return self.norm(h) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.model_type = args.model_type + self.model = LlamaModel(args) + if not args.tie_word_embeddings: + self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + out = self.model(inputs, cache) + if self.args.tie_word_embeddings: + out = self.model.embed_tokens.as_linear(out) + else: + out = self.lm_head(out) + return out + + def sanitize(self, weights): + # Remove unused precomputed rotary freqs + return { + k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k + } + + @property + def layers(self): + return self.model.layers diff --git a/llms/mlx_lm/tuner/utils.py b/llms/mlx_lm/tuner/utils.py index 7c78ee91..835cb482 100644 --- a/llms/mlx_lm/tuner/utils.py +++ b/llms/mlx_lm/tuner/utils.py @@ -98,6 +98,7 @@ def linear_to_lora_layers( "cohere", "minicpm", "deepseek", + "olmo2", ]: keys = set(["self_attn.q_proj", "self_attn.v_proj"]) if model.model_type in ["mixtral", "phimoe"]: diff --git a/llms/tests/test_models.py b/llms/tests/test_models.py index 93b881b9..edb594d7 100644 --- a/llms/tests/test_models.py +++ b/llms/tests/test_models.py @@ -792,6 +792,26 @@ class TestModels(unittest.TestCase): model, args.model_type, args.vocab_size, args.num_hidden_layers ) + def test_olmo2(self): + from mlx_lm.models import olmo2 + + args = olmo2.ModelArgs( + model_type="olmo2", + hidden_size=128, + attention_bias=False, + intermediate_size=256, + num_attention_heads=4, + num_hidden_layers=4, + num_key_value_heads=2, + rms_norm_eps=1e-4, + rope_theta=1000, + vocab_size=1000, + ) + model = olmo2.Model(args) + self.model_test_runner( + model, args.model_type, args.vocab_size, args.num_hidden_layers + ) + if __name__ == "__main__": unittest.main()