mirror of
				https://github.com/ml-explore/mlx-examples.git
				synced 2025-11-04 21:48:09 +08:00 
			
		
		
		
	
							
								
								
									
										312
									
								
								llms/mlx_lm/models/olmo2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										312
									
								
								llms/mlx_lm/models/olmo2.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,312 @@
 | 
			
		||||
# Copyright © 2023-2024 Apple Inc.
 | 
			
		||||
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from typing import Any, Dict, Optional, Union
 | 
			
		||||
 | 
			
		||||
import mlx.core as mx
 | 
			
		||||
import mlx.nn as nn
 | 
			
		||||
 | 
			
		||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class ModelArgs(BaseModelArgs):
 | 
			
		||||
    model_type: str
 | 
			
		||||
    hidden_size: int
 | 
			
		||||
    num_hidden_layers: int
 | 
			
		||||
    intermediate_size: int
 | 
			
		||||
    num_attention_heads: int
 | 
			
		||||
    rms_norm_eps: float
 | 
			
		||||
    vocab_size: int
 | 
			
		||||
    head_dim: Optional[int] = None
 | 
			
		||||
    max_position_embeddings: Optional[int] = None
 | 
			
		||||
    num_key_value_heads: Optional[int] = None
 | 
			
		||||
    attention_bias: bool = False
 | 
			
		||||
    mlp_bias: bool = False
 | 
			
		||||
    rope_theta: float = 10000
 | 
			
		||||
    rope_traditional: bool = False
 | 
			
		||||
    rope_scaling: Optional[Dict[str, Union[float, str]]] = None
 | 
			
		||||
    tie_word_embeddings: bool = True
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if self.num_key_value_heads is None:
 | 
			
		||||
            self.num_key_value_heads = self.num_attention_heads
 | 
			
		||||
 | 
			
		||||
        if self.rope_scaling:
 | 
			
		||||
            if not "factor" in self.rope_scaling:
 | 
			
		||||
                raise ValueError(f"rope_scaling must contain 'factor'")
 | 
			
		||||
            rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
 | 
			
		||||
                "rope_type"
 | 
			
		||||
            )
 | 
			
		||||
            if rope_type is None:
 | 
			
		||||
                raise ValueError(
 | 
			
		||||
                    f"rope_scaling must contain either 'type' or 'rope_type'"
 | 
			
		||||
                )
 | 
			
		||||
            if rope_type not in ["linear", "dynamic", "llama3"]:
 | 
			
		||||
                raise ValueError(
 | 
			
		||||
                    "rope_scaling 'type' currently only supports 'linear', 'dynamic' or 'llama3'"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DynamicNTKScalingRoPE(nn.Module):
 | 
			
		||||
    """Implements the rotary positional encoding with Dynamic NTK scaling and Llama 3 RoPE."""
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        dims: int,
 | 
			
		||||
        max_position_embeddings: int = 2048,
 | 
			
		||||
        traditional: bool = False,
 | 
			
		||||
        base: float = 10000,
 | 
			
		||||
        scale: float = 1.0,
 | 
			
		||||
        rope_type: str = "default",
 | 
			
		||||
        rope_scaling: dict = None,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.dims = dims
 | 
			
		||||
        self.max_position_embeddings = max_position_embeddings
 | 
			
		||||
        self.traditional = traditional
 | 
			
		||||
        self.scale = scale
 | 
			
		||||
        self.rope_type = rope_type
 | 
			
		||||
        self.rope_scaling = rope_scaling
 | 
			
		||||
        self.base = base
 | 
			
		||||
        self.compute_freqs()
 | 
			
		||||
 | 
			
		||||
    def compute_freqs(self):
 | 
			
		||||
        if self.rope_type != "llama3":
 | 
			
		||||
            self._freqs = None
 | 
			
		||||
            return
 | 
			
		||||
        factor = self.rope_scaling["factor"]
 | 
			
		||||
        low_freq_factor = self.rope_scaling.get("low_freq_factor", 1.0)
 | 
			
		||||
        high_freq_factor = self.rope_scaling.get("high_freq_factor", 4.0)
 | 
			
		||||
        old_context_len = self.rope_scaling.get(
 | 
			
		||||
            "original_max_position_embeddings",
 | 
			
		||||
            8192,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        low_freq_wavelen = old_context_len / low_freq_factor
 | 
			
		||||
        high_freq_wavelen = old_context_len / high_freq_factor
 | 
			
		||||
 | 
			
		||||
        freqs = self.base ** (mx.arange(0, self.dims, 2) / self.dims)
 | 
			
		||||
        wavelens = 2 * mx.pi * freqs
 | 
			
		||||
 | 
			
		||||
        freqs = mx.where(wavelens > low_freq_wavelen, freqs * factor, freqs)
 | 
			
		||||
        is_medium_freq = (wavelens > high_freq_wavelen) & (wavelens < low_freq_wavelen)
 | 
			
		||||
        smooth_factors = (old_context_len / wavelens - low_freq_factor) / (
 | 
			
		||||
            high_freq_factor - low_freq_factor
 | 
			
		||||
        )
 | 
			
		||||
        smooth_freqs = freqs / ((1 - smooth_factors) / factor + smooth_factors)
 | 
			
		||||
        self._freqs = mx.where(is_medium_freq, smooth_freqs, freqs)
 | 
			
		||||
        self.base = None
 | 
			
		||||
 | 
			
		||||
    def extra_repr(self):
 | 
			
		||||
        return (
 | 
			
		||||
            f"{self.dims}, traditional={self.traditional}, "
 | 
			
		||||
            f"max_position_embeddings={self.max_position_embeddings}, "
 | 
			
		||||
            f"scaling_factor={self.scale}, rope_type={self.rope_type}"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def __call__(self, x, offset: int = 0):
 | 
			
		||||
        return mx.fast.rope(
 | 
			
		||||
            x,
 | 
			
		||||
            self.dims,
 | 
			
		||||
            traditional=self.traditional,
 | 
			
		||||
            base=self.base,
 | 
			
		||||
            scale=self.scale,
 | 
			
		||||
            offset=offset,
 | 
			
		||||
            freqs=self._freqs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def initialize_rope(args: ModelArgs):
 | 
			
		||||
    head_dim = args.head_dim or args.hidden_size // args.num_attention_heads
 | 
			
		||||
 | 
			
		||||
    rope_scaling = args.rope_scaling
 | 
			
		||||
    rope_type = "default"
 | 
			
		||||
    rope_scale = 1.0
 | 
			
		||||
 | 
			
		||||
    if rope_scaling is not None:
 | 
			
		||||
        rope_type = (
 | 
			
		||||
            rope_scaling.get("type") or rope_scaling.get("rope_type") or "default"
 | 
			
		||||
        )
 | 
			
		||||
        if rope_type == "linear":
 | 
			
		||||
            rope_scale = 1 / rope_scaling["factor"]
 | 
			
		||||
        elif rope_type == "llama3":
 | 
			
		||||
            rope_scale = 1.0  # The scaling is handled internally for llama3
 | 
			
		||||
 | 
			
		||||
    return DynamicNTKScalingRoPE(
 | 
			
		||||
        dims=head_dim,
 | 
			
		||||
        max_position_embeddings=args.max_position_embeddings,
 | 
			
		||||
        traditional=args.rope_traditional,
 | 
			
		||||
        base=args.rope_theta,
 | 
			
		||||
        scale=rope_scale,
 | 
			
		||||
        rope_type=rope_type,
 | 
			
		||||
        rope_scaling=rope_scaling,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Attention(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        dim = args.hidden_size
 | 
			
		||||
        self.n_heads = n_heads = args.num_attention_heads
 | 
			
		||||
        self.n_kv_heads = n_kv_heads = args.num_key_value_heads
 | 
			
		||||
 | 
			
		||||
        self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
 | 
			
		||||
 | 
			
		||||
        self.scale = head_dim**-0.5
 | 
			
		||||
        if hasattr(args, "attention_bias"):
 | 
			
		||||
            attention_bias = args.attention_bias
 | 
			
		||||
        else:
 | 
			
		||||
            attention_bias = False
 | 
			
		||||
 | 
			
		||||
        self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
 | 
			
		||||
        self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
 | 
			
		||||
        self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
 | 
			
		||||
        self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
 | 
			
		||||
 | 
			
		||||
        self.rope = initialize_rope(args)
 | 
			
		||||
        self.q_norm = nn.RMSNorm(n_heads * head_dim, args.rms_norm_eps)
 | 
			
		||||
        self.k_norm = nn.RMSNorm(n_kv_heads * head_dim, args.rms_norm_eps)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        x: mx.array,
 | 
			
		||||
        mask: Optional[mx.array] = None,
 | 
			
		||||
        cache: Optional[Any] = None,
 | 
			
		||||
    ) -> mx.array:
 | 
			
		||||
        B, L, D = x.shape
 | 
			
		||||
 | 
			
		||||
        queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
 | 
			
		||||
        queries = self.q_norm(queries)
 | 
			
		||||
        keys = self.k_norm(keys)
 | 
			
		||||
 | 
			
		||||
        # Prepare the queries, keys and values for the attention computation
 | 
			
		||||
        queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
 | 
			
		||||
        keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
 | 
			
		||||
        values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
 | 
			
		||||
 | 
			
		||||
        if cache is not None:
 | 
			
		||||
            queries = self.rope(queries, offset=cache.offset)
 | 
			
		||||
            keys = self.rope(keys, offset=cache.offset)
 | 
			
		||||
            keys, values = cache.update_and_fetch(keys, values)
 | 
			
		||||
        else:
 | 
			
		||||
            queries = self.rope(queries)
 | 
			
		||||
            keys = self.rope(keys)
 | 
			
		||||
 | 
			
		||||
        output = scaled_dot_product_attention(
 | 
			
		||||
            queries, keys, values, cache=cache, scale=self.scale, mask=mask
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
 | 
			
		||||
        return self.o_proj(output)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MLP(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        dim = args.hidden_size
 | 
			
		||||
        hidden_dim = args.intermediate_size
 | 
			
		||||
        if hasattr(args, "mlp_bias"):
 | 
			
		||||
            mlp_bias = args.mlp_bias
 | 
			
		||||
        else:
 | 
			
		||||
            mlp_bias = False
 | 
			
		||||
 | 
			
		||||
        self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
 | 
			
		||||
        self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
 | 
			
		||||
        self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
 | 
			
		||||
 | 
			
		||||
    def __call__(self, x) -> mx.array:
 | 
			
		||||
        return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TransformerBlock(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.num_attention_heads = args.num_attention_heads
 | 
			
		||||
        self.hidden_size = args.hidden_size
 | 
			
		||||
        self.self_attn = Attention(args)
 | 
			
		||||
        self.mlp = MLP(args)
 | 
			
		||||
        self.post_attention_layernorm = nn.RMSNorm(
 | 
			
		||||
            args.hidden_size, eps=args.rms_norm_eps
 | 
			
		||||
        )
 | 
			
		||||
        self.post_feedforward_layernorm = nn.RMSNorm(
 | 
			
		||||
            args.hidden_size, eps=args.rms_norm_eps
 | 
			
		||||
        )
 | 
			
		||||
        self.args = args
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        x: mx.array,
 | 
			
		||||
        mask: Optional[mx.array] = None,
 | 
			
		||||
        cache: Optional[Any] = None,
 | 
			
		||||
    ) -> mx.array:
 | 
			
		||||
        r = self.post_attention_layernorm(self.self_attn(x, mask, cache))
 | 
			
		||||
        h = x + r
 | 
			
		||||
        r = self.post_feedforward_layernorm(self.mlp(h))
 | 
			
		||||
        out = h + r
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LlamaModel(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.args = args
 | 
			
		||||
        self.vocab_size = args.vocab_size
 | 
			
		||||
        self.num_hidden_layers = args.num_hidden_layers
 | 
			
		||||
        assert self.vocab_size > 0
 | 
			
		||||
        self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
 | 
			
		||||
        self.layers = [
 | 
			
		||||
            TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
 | 
			
		||||
        ]
 | 
			
		||||
        self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        inputs: mx.array,
 | 
			
		||||
        cache=None,
 | 
			
		||||
    ):
 | 
			
		||||
        h = self.embed_tokens(inputs)
 | 
			
		||||
 | 
			
		||||
        mask = create_attention_mask(h, cache)
 | 
			
		||||
 | 
			
		||||
        if cache is None:
 | 
			
		||||
            cache = [None] * len(self.layers)
 | 
			
		||||
 | 
			
		||||
        for layer, c in zip(self.layers, cache):
 | 
			
		||||
            h = layer(h, mask, cache=c)
 | 
			
		||||
 | 
			
		||||
        return self.norm(h)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Model(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.args = args
 | 
			
		||||
        self.model_type = args.model_type
 | 
			
		||||
        self.model = LlamaModel(args)
 | 
			
		||||
        if not args.tie_word_embeddings:
 | 
			
		||||
            self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        inputs: mx.array,
 | 
			
		||||
        cache=None,
 | 
			
		||||
    ):
 | 
			
		||||
        out = self.model(inputs, cache)
 | 
			
		||||
        if self.args.tie_word_embeddings:
 | 
			
		||||
            out = self.model.embed_tokens.as_linear(out)
 | 
			
		||||
        else:
 | 
			
		||||
            out = self.lm_head(out)
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
    def sanitize(self, weights):
 | 
			
		||||
        # Remove unused precomputed rotary freqs
 | 
			
		||||
        return {
 | 
			
		||||
            k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def layers(self):
 | 
			
		||||
        return self.model.layers
 | 
			
		||||
		Reference in New Issue
	
	Block a user