mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-13 21:21:11 +08:00
add cache + generation, clean up some stuff
This commit is contained in:
parent
a466cc5191
commit
88d7b67e6e
1
phi2/.gitignore
vendored
Normal file
1
phi2/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
weights.npz
|
@ -60,7 +60,7 @@ def convert():
|
|||||||
del state_dict[key_stub + ".bias"]
|
del state_dict[key_stub + ".bias"]
|
||||||
|
|
||||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||||
numpy.savez("weights/phi-2.npz", **weights)
|
numpy.savez("weights.npz", **weights)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
173
phi2/model.py
173
phi2/model.py
@ -7,7 +7,6 @@ import mlx.core as mx
|
|||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModelArgs:
|
class ModelArgs:
|
||||||
max_sequence_length: int = 2048
|
max_sequence_length: int = 2048
|
||||||
@ -18,23 +17,6 @@ class ModelArgs:
|
|||||||
rotary_dim: int = 32
|
rotary_dim: int = 32
|
||||||
|
|
||||||
|
|
||||||
class NewGELUActivation(nn.Module):
|
|
||||||
"""
|
|
||||||
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
|
||||||
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __call__(self, input: mx.array) -> mx.array:
|
|
||||||
return (
|
|
||||||
0.5
|
|
||||||
* input
|
|
||||||
* (
|
|
||||||
1.0
|
|
||||||
+ mx.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * (input**3)))
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class RoPEAttention(nn.Module):
|
class RoPEAttention(nn.Module):
|
||||||
def __init__(self, dims: int, num_heads: int, bias: bool = True):
|
def __init__(self, dims: int, num_heads: int, bias: bool = True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -77,6 +59,7 @@ class RoPEAttention(nn.Module):
|
|||||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
scores = scores + mask
|
scores = scores + mask
|
||||||
|
|
||||||
scores = mx.softmax(scores, axis=-1)
|
scores = mx.softmax(scores, axis=-1)
|
||||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
|
||||||
@ -92,19 +75,13 @@ class ParallelBlock(nn.Module):
|
|||||||
self.ln = nn.LayerNorm(dims)
|
self.ln = nn.LayerNorm(dims)
|
||||||
self.fc1 = nn.Linear(dims, mlp_dims)
|
self.fc1 = nn.Linear(dims, mlp_dims)
|
||||||
self.fc2 = nn.Linear(mlp_dims, dims)
|
self.fc2 = nn.Linear(mlp_dims, dims)
|
||||||
self.act = NewGELUActivation()
|
self.act = nn.GELU(approx="precise")
|
||||||
|
|
||||||
def __call__(self, x, x_mask):
|
def __call__(self, x, mask, cache):
|
||||||
residual = x
|
h = self.ln(x)
|
||||||
hidden_states = self.ln(x)
|
attn_h, cache = self.self_attention(h, h, h, mask, cache)
|
||||||
attn_outputs, _ = self.self_attention(
|
ff_h = self.fc2(self.act(self.fc1(h)))
|
||||||
hidden_states, hidden_states, hidden_states, x_mask
|
return attn_h + ff_h + x, cache
|
||||||
)
|
|
||||||
ff_hidden_states = self.fc2(self.act(self.fc1(hidden_states)))
|
|
||||||
|
|
||||||
hidden_states = attn_outputs + ff_hidden_states + residual
|
|
||||||
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerDecoder(nn.Module):
|
class TransformerDecoder(nn.Module):
|
||||||
@ -114,10 +91,22 @@ class TransformerDecoder(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.h = [ParallelBlock(dims, num_heads, mlp_dims) for i in range(num_layers)]
|
self.h = [ParallelBlock(dims, num_heads, mlp_dims) for i in range(num_layers)]
|
||||||
|
|
||||||
def __call__(self, x, x_mask):
|
def __call__(self, x, mask, cache):
|
||||||
for layer in self.h:
|
if cache is None:
|
||||||
x = layer(x, x_mask)
|
cache = [None] * len(self.h)
|
||||||
return x
|
|
||||||
|
for e, layer in enumerate(self.h):
|
||||||
|
x, cache[e] = layer(x, mask, cache[e])
|
||||||
|
return x, cache
|
||||||
|
|
||||||
|
|
||||||
|
class OutputHead(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs) -> None:
|
||||||
|
self.ln = nn.LayerNorm(config.model_dim)
|
||||||
|
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
||||||
|
|
||||||
|
def __call__(self, inputs):
|
||||||
|
return self.linear(self.ln(inputs))
|
||||||
|
|
||||||
|
|
||||||
class Phi2(nn.Module):
|
class Phi2(nn.Module):
|
||||||
@ -128,105 +117,69 @@ class Phi2(nn.Module):
|
|||||||
dims=config.model_dim,
|
dims=config.model_dim,
|
||||||
num_heads=config.num_heads,
|
num_heads=config.num_heads,
|
||||||
)
|
)
|
||||||
|
self.lm_head = OutputHead(config)
|
||||||
self.lm_head = LanguageModelingHead(config)
|
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
input_ids: mx.array,
|
inputs: mx.array,
|
||||||
attention_mask: mx.array = None,
|
mask: mx.array = None,
|
||||||
|
cache: mx.array = None,
|
||||||
) -> tuple[mx.array, mx.array]:
|
) -> tuple[mx.array, mx.array]:
|
||||||
x = self.wte(input_ids)
|
x = self.wte(inputs)
|
||||||
|
|
||||||
if attention_mask is not None:
|
mask = None
|
||||||
# convert 0's to -infs, 1's to 0's, and make it broadcastable
|
if x.shape[1] > 1:
|
||||||
attention_mask = mx.log(attention_mask)
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||||
attention_mask = mx.expand_dims(attention_mask, (1, 2))
|
mask = mask.astype(x.dtype)
|
||||||
|
|
||||||
|
y, cache = self.transformer(x, mask, cache)
|
||||||
|
return self.lm_head(y), cache
|
||||||
|
|
||||||
|
|
||||||
|
def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
|
||||||
|
def sample(logits):
|
||||||
|
if temp == 0:
|
||||||
|
return mx.argmax(logits, axis=-1)
|
||||||
else:
|
else:
|
||||||
attention_mask = nn.MultiHeadAttention.create_additive_causal_mask(
|
return mx.random.categorical(logits * (1 / temp))
|
||||||
x.shape[1]
|
|
||||||
)
|
|
||||||
|
|
||||||
y = self.transformer(x, attention_mask)
|
logits, cache = model(prompt)
|
||||||
return self.lm_head(y)
|
y = sample(logits[:, -1, :])
|
||||||
|
|
||||||
def generate(self, input_ids, temp=1.0):
|
|
||||||
cache = input_ids.tolist()
|
|
||||||
|
|
||||||
# Make an additive causal mask. We will need that to process the prompt.
|
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(input_ids.shape[1])
|
|
||||||
mask = mask.astype(self.wte.weight.dtype)
|
|
||||||
|
|
||||||
# First we process the prompt x the same way as in __call__ but
|
|
||||||
# save the caches in cache
|
|
||||||
x = self.wte(input_ids)
|
|
||||||
# for l in self.layers:
|
|
||||||
# x, c = l(x, mask=mask)
|
|
||||||
# cache.append(c) # <--- we store the per layer cache in a
|
|
||||||
# simple python list
|
|
||||||
x = self.transformer(x, mask)
|
|
||||||
y = self.lm_head(x[:, -1]) # <--- we only care about the last logits
|
|
||||||
# that generate the next token
|
|
||||||
y = mx.random.categorical(y * (1 / temp))
|
|
||||||
|
|
||||||
# y now has size [1]
|
|
||||||
# Since MLX is lazily evaluated nothing is computed yet.
|
|
||||||
# Calling y.item() would force the computation to happen at
|
|
||||||
# this point but we can also choose not to do that and let the
|
|
||||||
# user choose when to start the computation.
|
|
||||||
yield y
|
yield y
|
||||||
cache += [y.item()]
|
|
||||||
|
|
||||||
# Now we parsed the prompt and generated the first token we
|
|
||||||
# need to feed it back into the model and loop to generate the
|
|
||||||
# rest.
|
|
||||||
while True:
|
while True:
|
||||||
# Unsqueezing the last dimension to add a sequence length
|
logits, cache = model(y[:, None], cache=cache)
|
||||||
# dimension of 1
|
y = sample(logits.squeeze(1))
|
||||||
x = self.wte(mx.array(cache))
|
|
||||||
x = self.transformer(x, mask)
|
|
||||||
y = self.lm_head(x[:, -1])
|
|
||||||
y = mx.random.categorical(y * (1 / temp))
|
|
||||||
cache += [y[0].item()]
|
|
||||||
|
|
||||||
yield y
|
yield y
|
||||||
|
|
||||||
|
|
||||||
class LanguageModelingHead(nn.Module):
|
|
||||||
def __init__(self, config: ModelArgs) -> None:
|
|
||||||
self.ln = nn.LayerNorm(config.model_dim)
|
|
||||||
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
|
||||||
|
|
||||||
def __call__(self, inputs):
|
|
||||||
return self.linear(self.ln(inputs))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
model = Phi2(ModelArgs())
|
model = Phi2(ModelArgs())
|
||||||
|
|
||||||
weights = mx.load("weights/phi-2.npz")
|
weights = mx.load("weights/phi-2.npz")
|
||||||
weights = tree_unflatten(list(weights.items()))
|
weights = tree_unflatten(list(weights.items()))
|
||||||
weights = tree_map(lambda p: mx.array(p), weights)
|
weights = tree_map(lambda p: mx.array(p, mx.float32), weights)
|
||||||
|
|
||||||
model.update(weights)
|
model.update(weights)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
||||||
tokens = tokenizer(
|
prompt = tokenizer("Write a detailed analogy between mathematics and a lighthouse.",
|
||||||
'''def print_prime(n):
|
|
||||||
"""
|
|
||||||
Print all primes between 1 and n
|
|
||||||
"""''',
|
|
||||||
return_tensors="np",
|
return_tensors="np",
|
||||||
return_attention_mask=False,
|
return_attention_mask=False,
|
||||||
)
|
)["input_ids"]
|
||||||
|
|
||||||
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
prompt = mx.array(prompt)
|
||||||
|
|
||||||
|
tokens_per_eval = 1
|
||||||
|
max_tokens = 100
|
||||||
|
|
||||||
|
tokens = []
|
||||||
|
for token, _ in zip(generate(prompt, model), range(max_tokens)):
|
||||||
|
tokens.append(token)
|
||||||
|
|
||||||
|
if (len(tokens) % tokens_per_eval) == 0:
|
||||||
|
mx.eval(tokens)
|
||||||
|
s = tokenizer.decode([t.item() for t in tokens])
|
||||||
|
print(s, end="", flush=True)
|
||||||
|
tokens = []
|
||||||
|
|
||||||
print(
|
|
||||||
'''def print_prime(n):
|
|
||||||
"""
|
|
||||||
Print all primes between 1 and n
|
|
||||||
"""'''
|
|
||||||
)
|
|
||||||
for output in model.generate(**tokens):
|
|
||||||
print(tokenizer.decode(output.item()))
|
|
||||||
|
3
phi2/requirements.txt
Normal file
3
phi2/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
einops
|
||||||
|
mlx
|
||||||
|
transformers
|
Loading…
Reference in New Issue
Block a user