mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
GPT2 Support (#798)
* GPT-2 model support * Add test for gpt2 model * Fix weight sanitizing for quantization * use approx gelu --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
c457a3f88b
commit
89b0b75250
207
llms/mlx_lm/models/gpt2.py
Normal file
207
llms/mlx_lm/models/gpt2.py
Normal file
@ -0,0 +1,207 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_additive_causal_mask
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
n_ctx: int
|
||||
n_embd: int
|
||||
n_head: int
|
||||
n_layer: int
|
||||
n_positions: int
|
||||
layer_norm_epsilon: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
self.num_key_value_heads = self.n_head
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
assert args.n_embd % args.n_head == 0, "n_embd must be divisible by n_head"
|
||||
|
||||
self.n_embd = args.n_embd
|
||||
self.n_head = args.n_head
|
||||
self.head_dim = self.n_embd // self.n_head
|
||||
|
||||
self.scale = self.head_dim**-0.5
|
||||
|
||||
self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=True)
|
||||
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=True)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
qkv = self.c_attn(x)
|
||||
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.c_proj(output)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.n_embd = args.n_embd
|
||||
self.c_fc = nn.Linear(self.n_embd, 4 * self.n_embd)
|
||||
self.c_proj = nn.Linear(4 * self.n_embd, self.n_embd)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.c_proj(nn.gelu_approx(self.c_fc(x)))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.n_head = args.n_head
|
||||
self.n_embd = args.n_embd
|
||||
self.layer_norm_epsilon = args.layer_norm_epsilon
|
||||
self.attn = Attention(args)
|
||||
self.mlp = MLP(args)
|
||||
self.ln_1 = nn.LayerNorm(
|
||||
self.n_embd,
|
||||
eps=self.layer_norm_epsilon,
|
||||
)
|
||||
self.ln_2 = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r = self.attn(self.ln_1(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.ln_2(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
|
||||
class GPT2Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_embd = args.n_embd
|
||||
self.n_positions = args.n_positions
|
||||
self.vocab_size = args.vocab_size
|
||||
self.n_layer = args.n_layer
|
||||
self.layer_norm_epsilon = args.layer_norm_epsilon
|
||||
assert self.vocab_size > 0
|
||||
self.wte = nn.Embedding(self.vocab_size, self.n_embd)
|
||||
self.wpe = nn.Embedding(self.n_positions, self.n_embd)
|
||||
self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)]
|
||||
self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
_, L = inputs.shape
|
||||
|
||||
hidden_states = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
if hidden_states.shape[1] > 1:
|
||||
|
||||
position_ids = mx.array(np.arange(L))
|
||||
hidden_states += self.wpe(position_ids)
|
||||
|
||||
mask = create_additive_causal_mask(
|
||||
hidden_states.shape[1], cache[0].offset if cache is not None else 0
|
||||
)
|
||||
mask = mask.astype(hidden_states.dtype)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
|
||||
for layer, c in zip(self.h, cache):
|
||||
hidden_states = layer(hidden_states, mask, cache=c)
|
||||
|
||||
return self.ln_f(hidden_states)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.model = GPT2Model(args)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
out = self.model.wte.as_linear(out)
|
||||
return out
|
||||
|
||||
def sanitize(self, weights):
|
||||
new_weights = {}
|
||||
for i in range(self.args.n_layer):
|
||||
if f"h.{i}.attn.bias" in weights:
|
||||
del weights[f"h.{i}.attn.bias"]
|
||||
if f"h.{i}.attn.c_attn.weight" in weights:
|
||||
weights[f"h.{i}.attn.c_attn.weight"] = weights[
|
||||
f"h.{i}.attn.c_attn.weight"
|
||||
].transpose(1, 0)
|
||||
if f"h.{i}.attn.c_proj.weight" in weights:
|
||||
weights[f"h.{i}.attn.c_proj.weight"] = weights[
|
||||
f"h.{i}.attn.c_proj.weight"
|
||||
].transpose(1, 0)
|
||||
if f"h.{i}.mlp.c_fc.weight" in weights:
|
||||
weights[f"h.{i}.mlp.c_fc.weight"] = weights[
|
||||
f"h.{i}.mlp.c_fc.weight"
|
||||
].transpose(1, 0)
|
||||
if f"h.{i}.mlp.c_proj.weight" in weights:
|
||||
weights[f"h.{i}.mlp.c_proj.weight"] = weights[
|
||||
f"h.{i}.mlp.c_proj.weight"
|
||||
].transpose(1, 0)
|
||||
for weight in weights:
|
||||
if not weight.startswith("model."):
|
||||
new_weights[f"model.{weight}"] = weights[weight]
|
||||
else:
|
||||
new_weights[weight] = weights[weight]
|
||||
return new_weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.h
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.n_embd // self.args.n_head
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
@ -108,6 +108,8 @@ def linear_to_lora_layers(
|
||||
|
||||
elif model.model_type == "gpt_bigcode":
|
||||
keys = set(["attn.c_attn"])
|
||||
elif model.model_type == "gpt2":
|
||||
keys = set(["attn.c_attn"])
|
||||
elif model.model_type == "olmo":
|
||||
keys = set(["att_proj"])
|
||||
elif model.model_type == "openelm":
|
||||
|
@ -339,6 +339,22 @@ class TestModels(unittest.TestCase):
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_gpt2(self):
|
||||
from mlx_lm.models import gpt2
|
||||
|
||||
args = gpt2.ModelArgs(
|
||||
model_type="gpt2",
|
||||
n_ctx=1024,
|
||||
n_embd=768,
|
||||
n_head=12,
|
||||
n_layer=12,
|
||||
n_positions=1024,
|
||||
layer_norm_epsilon=1e-5,
|
||||
vocab_size=50256,
|
||||
)
|
||||
model = gpt2.Model(args)
|
||||
self.model_test_runner(model, args.model_type, args.vocab_size, args.n_layer)
|
||||
|
||||
def test_openelm(self):
|
||||
from mlx_lm.models import openelm
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user