diff --git a/llms/mlx_lm/models/gpt2.py b/llms/mlx_lm/models/gpt2.py new file mode 100644 index 00000000..ece7b6ec --- /dev/null +++ b/llms/mlx_lm/models/gpt2.py @@ -0,0 +1,207 @@ +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union + +import mlx.core as mx +import mlx.nn as nn +import numpy as np + +from .base import BaseModelArgs, create_additive_causal_mask + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + n_ctx: int + n_embd: int + n_head: int + n_layer: int + n_positions: int + layer_norm_epsilon: float + vocab_size: int + num_key_value_heads: int = None + + def __post_init__(self): + if self.num_key_value_heads is None: + self.num_key_value_heads = self.n_head + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + assert args.n_embd % args.n_head == 0, "n_embd must be divisible by n_head" + + self.n_embd = args.n_embd + self.n_head = args.n_head + self.head_dim = self.n_embd // self.n_head + + self.scale = self.head_dim**-0.5 + + self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=True) + self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=True) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> mx.array: + B, L, D = x.shape + + qkv = self.c_attn(x) + queries, keys, values = mx.split(qkv, 3, axis=-1) + + # Prepare the queries, keys and values for the attention computation + queries = queries.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3) + + if cache is not None: + keys, values = cache.update_and_fetch(keys, values) + + output = mx.fast.scaled_dot_product_attention( + queries, keys, values, scale=self.scale, mask=mask + ) + + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.c_proj(output) + + +class MLP(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + self.n_embd = args.n_embd + self.c_fc = nn.Linear(self.n_embd, 4 * self.n_embd) + self.c_proj = nn.Linear(4 * self.n_embd, self.n_embd) + + def __call__(self, x) -> mx.array: + return self.c_proj(nn.gelu_approx(self.c_fc(x))) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + self.n_head = args.n_head + self.n_embd = args.n_embd + self.layer_norm_epsilon = args.layer_norm_epsilon + self.attn = Attention(args) + self.mlp = MLP(args) + self.ln_1 = nn.LayerNorm( + self.n_embd, + eps=self.layer_norm_epsilon, + ) + self.ln_2 = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Tuple[mx.array, mx.array]] = None, + ) -> mx.array: + r = self.attn(self.ln_1(x), mask, cache) + h = x + r + r = self.mlp(self.ln_2(h)) + out = h + r + return out + + +class GPT2Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.n_embd = args.n_embd + self.n_positions = args.n_positions + self.vocab_size = args.vocab_size + self.n_layer = args.n_layer + self.layer_norm_epsilon = args.layer_norm_epsilon + assert self.vocab_size > 0 + self.wte = nn.Embedding(self.vocab_size, self.n_embd) + self.wpe = nn.Embedding(self.n_positions, self.n_embd) + self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)] + self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + _, L = inputs.shape + + hidden_states = self.wte(inputs) + + mask = None + if hidden_states.shape[1] > 1: + + position_ids = mx.array(np.arange(L)) + hidden_states += self.wpe(position_ids) + + mask = create_additive_causal_mask( + hidden_states.shape[1], cache[0].offset if cache is not None else 0 + ) + mask = mask.astype(hidden_states.dtype) + + if cache is None: + cache = [None] * len(self.h) + + for layer, c in zip(self.h, cache): + hidden_states = layer(hidden_states, mask, cache=c) + + return self.ln_f(hidden_states) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.model_type = args.model_type + self.model = GPT2Model(args) + + def __call__( + self, + inputs: mx.array, + cache=None, + ): + out = self.model(inputs, cache) + out = self.model.wte.as_linear(out) + return out + + def sanitize(self, weights): + new_weights = {} + for i in range(self.args.n_layer): + if f"h.{i}.attn.bias" in weights: + del weights[f"h.{i}.attn.bias"] + if f"h.{i}.attn.c_attn.weight" in weights: + weights[f"h.{i}.attn.c_attn.weight"] = weights[ + f"h.{i}.attn.c_attn.weight" + ].transpose(1, 0) + if f"h.{i}.attn.c_proj.weight" in weights: + weights[f"h.{i}.attn.c_proj.weight"] = weights[ + f"h.{i}.attn.c_proj.weight" + ].transpose(1, 0) + if f"h.{i}.mlp.c_fc.weight" in weights: + weights[f"h.{i}.mlp.c_fc.weight"] = weights[ + f"h.{i}.mlp.c_fc.weight" + ].transpose(1, 0) + if f"h.{i}.mlp.c_proj.weight" in weights: + weights[f"h.{i}.mlp.c_proj.weight"] = weights[ + f"h.{i}.mlp.c_proj.weight" + ].transpose(1, 0) + for weight in weights: + if not weight.startswith("model."): + new_weights[f"model.{weight}"] = weights[weight] + else: + new_weights[weight] = weights[weight] + return new_weights + + @property + def layers(self): + return self.model.h + + @property + def head_dim(self): + return self.args.n_embd // self.args.n_head + + @property + def n_kv_heads(self): + return self.args.num_key_value_heads diff --git a/llms/mlx_lm/tuner/utils.py b/llms/mlx_lm/tuner/utils.py index c0ef4b76..2614c7a5 100644 --- a/llms/mlx_lm/tuner/utils.py +++ b/llms/mlx_lm/tuner/utils.py @@ -108,6 +108,8 @@ def linear_to_lora_layers( elif model.model_type == "gpt_bigcode": keys = set(["attn.c_attn"]) + elif model.model_type == "gpt2": + keys = set(["attn.c_attn"]) elif model.model_type == "olmo": keys = set(["att_proj"]) elif model.model_type == "openelm": diff --git a/llms/tests/test_models.py b/llms/tests/test_models.py index 79556e68..a3c0b9c4 100644 --- a/llms/tests/test_models.py +++ b/llms/tests/test_models.py @@ -339,6 +339,22 @@ class TestModels(unittest.TestCase): model, args.model_type, args.vocab_size, args.num_hidden_layers ) + def test_gpt2(self): + from mlx_lm.models import gpt2 + + args = gpt2.ModelArgs( + model_type="gpt2", + n_ctx=1024, + n_embd=768, + n_head=12, + n_layer=12, + n_positions=1024, + layer_norm_epsilon=1e-5, + vocab_size=50256, + ) + model = gpt2.Model(args) + self.model_test_runner(model, args.model_type, args.vocab_size, args.n_layer) + def test_openelm(self): from mlx_lm.models import openelm