mirror of
				https://github.com/ml-explore/mlx-examples.git
				synced 2025-11-04 05:28:11 +08:00 
			
		
		
		
	GPT2 Support (#798)
* GPT-2 model support * Add test for gpt2 model * Fix weight sanitizing for quantization * use approx gelu --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
		
							
								
								
									
										207
									
								
								llms/mlx_lm/models/gpt2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										207
									
								
								llms/mlx_lm/models/gpt2.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,207 @@
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from typing import Dict, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import mlx.core as mx
 | 
			
		||||
import mlx.nn as nn
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from .base import BaseModelArgs, create_additive_causal_mask
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class ModelArgs(BaseModelArgs):
 | 
			
		||||
    model_type: str
 | 
			
		||||
    n_ctx: int
 | 
			
		||||
    n_embd: int
 | 
			
		||||
    n_head: int
 | 
			
		||||
    n_layer: int
 | 
			
		||||
    n_positions: int
 | 
			
		||||
    layer_norm_epsilon: float
 | 
			
		||||
    vocab_size: int
 | 
			
		||||
    num_key_value_heads: int = None
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if self.num_key_value_heads is None:
 | 
			
		||||
            self.num_key_value_heads = self.n_head
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Attention(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        assert args.n_embd % args.n_head == 0, "n_embd must be divisible by n_head"
 | 
			
		||||
 | 
			
		||||
        self.n_embd = args.n_embd
 | 
			
		||||
        self.n_head = args.n_head
 | 
			
		||||
        self.head_dim = self.n_embd // self.n_head
 | 
			
		||||
 | 
			
		||||
        self.scale = self.head_dim**-0.5
 | 
			
		||||
 | 
			
		||||
        self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=True)
 | 
			
		||||
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=True)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        x: mx.array,
 | 
			
		||||
        mask: Optional[mx.array] = None,
 | 
			
		||||
        cache: Optional[Tuple[mx.array, mx.array]] = None,
 | 
			
		||||
    ) -> mx.array:
 | 
			
		||||
        B, L, D = x.shape
 | 
			
		||||
 | 
			
		||||
        qkv = self.c_attn(x)
 | 
			
		||||
        queries, keys, values = mx.split(qkv, 3, axis=-1)
 | 
			
		||||
 | 
			
		||||
        # Prepare the queries, keys and values for the attention computation
 | 
			
		||||
        queries = queries.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
 | 
			
		||||
        keys = keys.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
 | 
			
		||||
        values = values.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
 | 
			
		||||
 | 
			
		||||
        if cache is not None:
 | 
			
		||||
            keys, values = cache.update_and_fetch(keys, values)
 | 
			
		||||
 | 
			
		||||
        output = mx.fast.scaled_dot_product_attention(
 | 
			
		||||
            queries, keys, values, scale=self.scale, mask=mask
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
 | 
			
		||||
        return self.c_proj(output)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MLP(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        self.n_embd = args.n_embd
 | 
			
		||||
        self.c_fc = nn.Linear(self.n_embd, 4 * self.n_embd)
 | 
			
		||||
        self.c_proj = nn.Linear(4 * self.n_embd, self.n_embd)
 | 
			
		||||
 | 
			
		||||
    def __call__(self, x) -> mx.array:
 | 
			
		||||
        return self.c_proj(nn.gelu_approx(self.c_fc(x)))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TransformerBlock(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
        self.n_head = args.n_head
 | 
			
		||||
        self.n_embd = args.n_embd
 | 
			
		||||
        self.layer_norm_epsilon = args.layer_norm_epsilon
 | 
			
		||||
        self.attn = Attention(args)
 | 
			
		||||
        self.mlp = MLP(args)
 | 
			
		||||
        self.ln_1 = nn.LayerNorm(
 | 
			
		||||
            self.n_embd,
 | 
			
		||||
            eps=self.layer_norm_epsilon,
 | 
			
		||||
        )
 | 
			
		||||
        self.ln_2 = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        x: mx.array,
 | 
			
		||||
        mask: Optional[mx.array] = None,
 | 
			
		||||
        cache: Optional[Tuple[mx.array, mx.array]] = None,
 | 
			
		||||
    ) -> mx.array:
 | 
			
		||||
        r = self.attn(self.ln_1(x), mask, cache)
 | 
			
		||||
        h = x + r
 | 
			
		||||
        r = self.mlp(self.ln_2(h))
 | 
			
		||||
        out = h + r
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GPT2Model(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.n_embd = args.n_embd
 | 
			
		||||
        self.n_positions = args.n_positions
 | 
			
		||||
        self.vocab_size = args.vocab_size
 | 
			
		||||
        self.n_layer = args.n_layer
 | 
			
		||||
        self.layer_norm_epsilon = args.layer_norm_epsilon
 | 
			
		||||
        assert self.vocab_size > 0
 | 
			
		||||
        self.wte = nn.Embedding(self.vocab_size, self.n_embd)
 | 
			
		||||
        self.wpe = nn.Embedding(self.n_positions, self.n_embd)
 | 
			
		||||
        self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)]
 | 
			
		||||
        self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        inputs: mx.array,
 | 
			
		||||
        cache=None,
 | 
			
		||||
    ):
 | 
			
		||||
        _, L = inputs.shape
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.wte(inputs)
 | 
			
		||||
 | 
			
		||||
        mask = None
 | 
			
		||||
        if hidden_states.shape[1] > 1:
 | 
			
		||||
 | 
			
		||||
            position_ids = mx.array(np.arange(L))
 | 
			
		||||
            hidden_states += self.wpe(position_ids)
 | 
			
		||||
 | 
			
		||||
            mask = create_additive_causal_mask(
 | 
			
		||||
                hidden_states.shape[1], cache[0].offset if cache is not None else 0
 | 
			
		||||
            )
 | 
			
		||||
            mask = mask.astype(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if cache is None:
 | 
			
		||||
            cache = [None] * len(self.h)
 | 
			
		||||
 | 
			
		||||
        for layer, c in zip(self.h, cache):
 | 
			
		||||
            hidden_states = layer(hidden_states, mask, cache=c)
 | 
			
		||||
 | 
			
		||||
        return self.ln_f(hidden_states)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Model(nn.Module):
 | 
			
		||||
    def __init__(self, args: ModelArgs):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.args = args
 | 
			
		||||
        self.model_type = args.model_type
 | 
			
		||||
        self.model = GPT2Model(args)
 | 
			
		||||
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        inputs: mx.array,
 | 
			
		||||
        cache=None,
 | 
			
		||||
    ):
 | 
			
		||||
        out = self.model(inputs, cache)
 | 
			
		||||
        out = self.model.wte.as_linear(out)
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
    def sanitize(self, weights):
 | 
			
		||||
        new_weights = {}
 | 
			
		||||
        for i in range(self.args.n_layer):
 | 
			
		||||
            if f"h.{i}.attn.bias" in weights:
 | 
			
		||||
                del weights[f"h.{i}.attn.bias"]
 | 
			
		||||
            if f"h.{i}.attn.c_attn.weight" in weights:
 | 
			
		||||
                weights[f"h.{i}.attn.c_attn.weight"] = weights[
 | 
			
		||||
                    f"h.{i}.attn.c_attn.weight"
 | 
			
		||||
                ].transpose(1, 0)
 | 
			
		||||
            if f"h.{i}.attn.c_proj.weight" in weights:
 | 
			
		||||
                weights[f"h.{i}.attn.c_proj.weight"] = weights[
 | 
			
		||||
                    f"h.{i}.attn.c_proj.weight"
 | 
			
		||||
                ].transpose(1, 0)
 | 
			
		||||
            if f"h.{i}.mlp.c_fc.weight" in weights:
 | 
			
		||||
                weights[f"h.{i}.mlp.c_fc.weight"] = weights[
 | 
			
		||||
                    f"h.{i}.mlp.c_fc.weight"
 | 
			
		||||
                ].transpose(1, 0)
 | 
			
		||||
            if f"h.{i}.mlp.c_proj.weight" in weights:
 | 
			
		||||
                weights[f"h.{i}.mlp.c_proj.weight"] = weights[
 | 
			
		||||
                    f"h.{i}.mlp.c_proj.weight"
 | 
			
		||||
                ].transpose(1, 0)
 | 
			
		||||
        for weight in weights:
 | 
			
		||||
            if not weight.startswith("model."):
 | 
			
		||||
                new_weights[f"model.{weight}"] = weights[weight]
 | 
			
		||||
            else:
 | 
			
		||||
                new_weights[weight] = weights[weight]
 | 
			
		||||
        return new_weights
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def layers(self):
 | 
			
		||||
        return self.model.h
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def head_dim(self):
 | 
			
		||||
        return self.args.n_embd // self.args.n_head
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def n_kv_heads(self):
 | 
			
		||||
        return self.args.num_key_value_heads
 | 
			
		||||
@@ -108,6 +108,8 @@ def linear_to_lora_layers(
 | 
			
		||||
 | 
			
		||||
    elif model.model_type == "gpt_bigcode":
 | 
			
		||||
        keys = set(["attn.c_attn"])
 | 
			
		||||
    elif model.model_type == "gpt2":
 | 
			
		||||
        keys = set(["attn.c_attn"])
 | 
			
		||||
    elif model.model_type == "olmo":
 | 
			
		||||
        keys = set(["att_proj"])
 | 
			
		||||
    elif model.model_type == "openelm":
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user