mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 10:56:38 +08:00
Merge branch 'ml-explore:main' into completion_only
This commit is contained in:
commit
8c1d33d523
@ -4,7 +4,7 @@ from typing import Dict, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_additive_causal_mask
|
||||
from .base import BaseModelArgs, KVCache, create_additive_causal_mask
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -16,7 +16,7 @@ class ModelArgs(BaseModelArgs):
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
num_key_value_heads: Optional[int] = None
|
||||
attention_bias: bool = False
|
||||
mlp_bias: bool = False
|
||||
rope_theta: float = 10000
|
||||
@ -73,7 +73,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@ -135,7 +135,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
|
@ -1,10 +1,11 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .su_rope import SuScaledRotaryEmbedding
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -16,10 +17,12 @@ class ModelArgs(BaseModelArgs):
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
num_key_value_heads: Optional[int] = None
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
|
||||
max_position_embeddings: int = 131072
|
||||
original_max_position_embeddings: int = 4096
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
@ -30,9 +33,9 @@ class ModelArgs(BaseModelArgs):
|
||||
if not all(key in self.rope_scaling for key in required_keys):
|
||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||
|
||||
if self.rope_scaling["type"] != "linear":
|
||||
if self.rope_scaling["type"] not in ["su", "linear"]:
|
||||
print(
|
||||
"[WARNING] rope_scaling 'type' currently only supports 'linear' setting rope scaling to false."
|
||||
"[WARNING] rope_scaling 'type' currently only supports 'linear' and 'su'; setting rope scaling to false."
|
||||
)
|
||||
self.rope_scaling = None
|
||||
|
||||
@ -43,6 +46,7 @@ class Attention(nn.Module):
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
assert args.num_key_value_heads is not None
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
|
||||
@ -53,23 +57,34 @@ class Attention(nn.Module):
|
||||
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||
|
||||
rope_scale = (
|
||||
1 / args.rope_scaling["factor"]
|
||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||
else 1
|
||||
)
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
rope_scale = 1.0
|
||||
if args.rope_scaling and args.rope_scaling["type"] == "su":
|
||||
self.rope = SuScaledRotaryEmbedding(
|
||||
head_dim,
|
||||
traditional=False,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
original_max_position_embeddings=args.original_max_position_embeddings,
|
||||
short_factor=args.rope_scaling["short_factor"],
|
||||
long_factor=args.rope_scaling["long_factor"],
|
||||
)
|
||||
else:
|
||||
if args.rope_scaling and args.rope_scaling["type"] == "linear":
|
||||
assert isinstance(args.rope_scaling["factor"], float)
|
||||
rope_scale = 1 / args.rope_scaling["factor"]
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@ -128,7 +143,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
|
@ -1,3 +1,4 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
@ -5,7 +6,7 @@ from typing import Dict, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, KVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -19,14 +20,14 @@ class ModelArgs(BaseModelArgs):
|
||||
num_attention_heads: int
|
||||
layer_norm_epsilon: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
num_key_value_heads: Optional[int] = None
|
||||
mup_attn_multiplier: float = 1.0
|
||||
mup_use_scaling: bool = True
|
||||
mup_embedding_multiplier: float = 10.0
|
||||
mup_width_multiplier: float = 8.0
|
||||
rope_embedding_base: float = 1000000
|
||||
rope_position_scale: float = 1.0
|
||||
blocksparse_block_size: int = (64,)
|
||||
blocksparse_block_size: Tuple[int] = (64,)
|
||||
blocksparse_num_local_blocks: int = 16
|
||||
blocksparse_vert_stride: int = 8
|
||||
|
||||
@ -58,6 +59,7 @@ class Attention(nn.Module):
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
assert args.num_key_value_heads is not None
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
self.n_q_per_kv = n_heads // n_kv_heads
|
||||
|
||||
@ -157,7 +159,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@ -226,7 +228,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
|
@ -4,7 +4,7 @@ from typing import Dict, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, KVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -16,7 +16,7 @@ class ModelArgs(BaseModelArgs):
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
num_key_value_heads: Optional[int] = None
|
||||
rope_theta: float = 1000000
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
@ -41,6 +41,7 @@ class Attention(nn.Module):
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
assert args.num_key_value_heads is not None
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
@ -67,7 +68,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@ -121,7 +122,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
|
@ -5,7 +5,7 @@ from typing import Dict, Optional, Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ class ModelArgs(BaseModelArgs):
|
||||
shared_expert_intermediate_size: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
num_key_value_heads: Optional[int] = None
|
||||
rope_theta: float = 1000000
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
@ -47,6 +47,7 @@ class Attention(nn.Module):
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
assert args.num_key_value_heads is not None
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
@ -67,7 +68,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@ -159,7 +160,7 @@ class Qwen2MoeDecoderLayer(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
|
@ -4,7 +4,7 @@ from typing import Optional, Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, KVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -43,7 +43,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@ -98,7 +98,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
|
79
llms/mlx_lm/models/su_rope.py
Normal file
79
llms/mlx_lm/models/su_rope.py
Normal file
@ -0,0 +1,79 @@
|
||||
import math
|
||||
from typing import List, Union
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
class SuScaledRotaryEmbedding:
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
traditional: bool = False,
|
||||
base: float = 10000.0,
|
||||
scale: float = 1.0,
|
||||
max_position_embeddings: int = 131072,
|
||||
original_max_position_embeddings: int = 4096,
|
||||
short_factor: Union[List[float], float] = 1.0,
|
||||
long_factor: Union[List[float], float] = 1.0,
|
||||
):
|
||||
"""
|
||||
Phi3Su Scaled Rotary Embedding layer for Phi-3 models.
|
||||
|
||||
Args:
|
||||
dims (int): The feature dimensions to be rotated.
|
||||
traditional (bool, optional): Unused. Default: ``False``.
|
||||
base (int, optional): Base for the exponential scaling.
|
||||
scale (float, optional): The scale used to scale the positions.
|
||||
Default: ``1.0``.
|
||||
max_position_embeddings (int, optional): The maximum sequence
|
||||
length that this model was trained with. This is used to determine
|
||||
the size of the original RoPE embeddings when using long scaling.
|
||||
Default: ``131072``.
|
||||
original_max_position_embeddings (int, optional): The maximum
|
||||
sequence length that this model was trained with. This is used to
|
||||
determine the size of the original RoPE embeddings when using long
|
||||
scaling. Default: ``4096``.
|
||||
short_factor (float or list[float], optional): List of scaling
|
||||
factors for sequences of length lesser than
|
||||
``original_max_position_embeddings``. Default: ``1.0``.
|
||||
long_factor (float or list[float], optional): List of scaling
|
||||
factors for sequences of length greater than
|
||||
``original_max_position_embeddings``. Default: ``1.0``.
|
||||
"""
|
||||
self.inv_freq_short = 1.0 / (
|
||||
mx.array(short_factor, dtype=mx.float32)
|
||||
* base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
||||
)
|
||||
self.inv_freq_long = 1.0 / (
|
||||
scale
|
||||
* mx.array(long_factor, dtype=mx.float32)
|
||||
* base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
||||
)
|
||||
self.original_max_position_embeddings = original_max_position_embeddings
|
||||
self.scaling_factor = math.sqrt(
|
||||
1
|
||||
+ math.log(max_position_embeddings / original_max_position_embeddings)
|
||||
/ math.log(original_max_position_embeddings)
|
||||
)
|
||||
|
||||
def _get_cos_sin(self, offset, L):
|
||||
position_ids = mx.arange(offset, offset + L, dtype=mx.float32)
|
||||
inv_freq = (
|
||||
self.inv_freq_long
|
||||
if (offset + L) > self.original_max_position_embeddings
|
||||
else self.inv_freq_short
|
||||
)
|
||||
freqs = position_ids[:, None] * inv_freq[None, :]
|
||||
emb = mx.concatenate([freqs, freqs], axis=-1)
|
||||
cos = mx.cos(emb) * self.scaling_factor
|
||||
sin = mx.sin(emb) * self.scaling_factor
|
||||
return cos, sin
|
||||
|
||||
def __call__(self, x, offset: int = 0):
|
||||
def _rotate_half(_x):
|
||||
midpoint = _x.shape[-1] // 2
|
||||
x1, x2 = _x[..., :midpoint], _x[..., midpoint:]
|
||||
return mx.concatenate([-x2, x1], axis=-1)
|
||||
|
||||
cos, sin = self._get_cos_sin(offset, x.shape[2])
|
||||
return (x * cos) + (_rotate_half(x) * sin)
|
@ -140,7 +140,8 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
self.validate_model_parameters()
|
||||
|
||||
# Get stop id sequences, if provided
|
||||
stop_words = self.body.get("stop", [])
|
||||
stop_words = self.body.get("stop")
|
||||
stop_words = stop_words or []
|
||||
stop_words = [stop_words] if isinstance(stop_words, str) else stop_words
|
||||
stop_id_sequences = [
|
||||
self.tokenizer.encode(stop_word, add_special_tokens=False)
|
||||
@ -171,14 +172,14 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
if not isinstance(self.max_tokens, int) or self.max_tokens < 0:
|
||||
raise ValueError("max_tokens must be a non-negative integer")
|
||||
|
||||
if not isinstance(self.temperature, float) or self.temperature < 0:
|
||||
if not isinstance(self.temperature, (float, int)) or self.temperature < 0:
|
||||
raise ValueError("temperature must be a non-negative float")
|
||||
|
||||
if not isinstance(self.top_p, float) or self.top_p < 0 or self.top_p > 1:
|
||||
if not isinstance(self.top_p, (float, int)) or self.top_p < 0 or self.top_p > 1:
|
||||
raise ValueError("top_p must be a float between 0 and 1")
|
||||
|
||||
if (
|
||||
not isinstance(self.repetition_penalty, float)
|
||||
not isinstance(self.repetition_penalty, (float, int))
|
||||
or self.repetition_penalty < 0
|
||||
):
|
||||
raise ValueError("repetition_penalty must be a non-negative float")
|
||||
@ -527,6 +528,18 @@ def main():
|
||||
help="Set the MLX cache limit in GB",
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chat-template",
|
||||
type=str,
|
||||
default="",
|
||||
help="Specify a chat template for the tokenizer",
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-default-chat-template",
|
||||
action="store_true",
|
||||
help="Use the default chat template",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(
|
||||
@ -540,10 +553,17 @@ def main():
|
||||
|
||||
# Building tokenizer_config
|
||||
tokenizer_config = {"trust_remote_code": True if args.trust_remote_code else None}
|
||||
if args.chat_template:
|
||||
tokenizer_config["chat_template"] = args.chat_template
|
||||
|
||||
model, tokenizer = load(
|
||||
args.model, adapter_path=args.adapter_path, tokenizer_config=tokenizer_config
|
||||
)
|
||||
|
||||
if args.use_default_chat_template:
|
||||
if tokenizer.chat_template is None:
|
||||
tokenizer.chat_template = tokenizer.default_chat_template
|
||||
|
||||
run(args.host, args.port, model, tokenizer)
|
||||
|
||||
|
||||
|
@ -151,6 +151,12 @@ def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False)
|
||||
for i in indices:
|
||||
# Encode batch
|
||||
batch = [tokenizer.encode(dataset[j]) for j in batch_idx[i]]
|
||||
for b in batch:
|
||||
if b[-1] == tokenizer.eos_token_id:
|
||||
print("[WARNING] Example already has an EOS token appended")
|
||||
else:
|
||||
b.append(tokenizer.eos_token_id)
|
||||
|
||||
lengths = [len(x) for x in batch]
|
||||
|
||||
if max(lengths) > max_seq_length:
|
||||
|
@ -1,3 +1,3 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
__version__ = "0.14.2"
|
||||
__version__ = "0.15.0"
|
||||
|
@ -151,8 +151,6 @@ def log_mel_spectrogram(
|
||||
mx.array, shape = (80, n_frames)
|
||||
An array that contains the Mel spectrogram
|
||||
"""
|
||||
device = mx.default_device()
|
||||
mx.set_default_device(mx.cpu)
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
elif not isinstance(audio, mx.array):
|
||||
@ -170,5 +168,4 @@ def log_mel_spectrogram(
|
||||
log_spec = mx.maximum(mel_spec, 1e-10).log10()
|
||||
log_spec = mx.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = (log_spec + 4.0) / 4.0
|
||||
mx.set_default_device(device)
|
||||
return log_spec
|
||||
|
Loading…
Reference in New Issue
Block a user