mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 10:41:18 +08:00
optimizations
This commit is contained in:
parent
4e94e87f57
commit
8deada9d11
@ -140,9 +140,7 @@ class Mamba2Block(nn.Module):
|
||||
dt = proj[..., -self.n_heads:]
|
||||
|
||||
# Process time steps - simplified to match PyTorch
|
||||
dt = nn.softplus(dt + self.dt_bias) # Time steps may need scaling
|
||||
dt = dt * (self.args.time_step_max - self.args.time_step_min) + self.args.time_step_min
|
||||
dt = mx.minimum(mx.maximum(dt, self.args.time_step_floor), self.args.time_step_max)
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
|
||||
x_conv, conv_state = self.conv1d(x_conv, cache[0] if cache else None)
|
||||
if cache is not None:
|
||||
@ -151,9 +149,8 @@ class Mamba2Block(nn.Module):
|
||||
|
||||
# Split conv output and reshape
|
||||
x = x_conv[..., :self.d_inner]
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
||||
B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, self.d_state // self.n_heads))
|
||||
C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, self.d_state // self.n_heads))
|
||||
B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.n_groups * self.d_state], (batch_size, seq_len, self.n_groups, -1))
|
||||
C = mx.reshape(x_conv[..., -self.n_groups * self.d_state:], (batch_size, seq_len, self.n_groups, -1))
|
||||
|
||||
# Reshape for SSM processing
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
||||
@ -161,12 +158,12 @@ class Mamba2Block(nn.Module):
|
||||
# Initialize state
|
||||
if cache and cache[1] is not None:
|
||||
# State initialization might need proper scaling
|
||||
prev_state = cache[1] * self.args.initializer_range
|
||||
prev_state = cache[1]
|
||||
else:
|
||||
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
|
||||
|
||||
# Compute dA - simplified to match PyTorch
|
||||
A = -mx.exp(self.A_log) * self.args.initializer_range
|
||||
A = -mx.exp(self.A_log)
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
||||
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
||||
|
||||
@ -182,21 +179,18 @@ class Mamba2Block(nn.Module):
|
||||
dAt = dA[:, t] # [batch, n_heads]
|
||||
|
||||
# Compute dBx using einsum to match PyTorch
|
||||
dBx = mx.einsum('bh,bhd,bhp->bhpd', dAt, Bt, xt)
|
||||
|
||||
# Update state - matches PyTorch implementation
|
||||
next_state = (
|
||||
next_state * mx.expand_dims(dAt, axis=(-1, -2)) + dBx
|
||||
)
|
||||
|
||||
# Compute output
|
||||
yt = mx.einsum('bhpd,bhd->bhp', next_state, Ct)
|
||||
dBx = mx.einsum('bh,bgd,bhp->bhpd', dAt, Bt, xt) # dAt: (b,h), Bt: (b,g,d), xt: (b,h,p) -> (b,h,p,d)
|
||||
|
||||
# Update state
|
||||
next_state = next_state * mx.expand_dims(dAt, axis=(-1, -2)) + dBx
|
||||
|
||||
# Compute output with groups
|
||||
yt = mx.einsum('bhpd,bgd->bhp', next_state, Ct)
|
||||
yt = yt + xt * mx.expand_dims(self.D, -1)
|
||||
|
||||
# Reshape and normalize
|
||||
yt = mx.reshape(yt, (batch_size, 1, self.d_inner))
|
||||
yt = self.norm(yt, z[:, t:t+1])
|
||||
yt = yt * (1.0 / math.sqrt(self.d_head))
|
||||
outputs.append(self.out_proj(yt))
|
||||
|
||||
# Update cache
|
||||
|
Loading…
Reference in New Issue
Block a user