mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-18 00:11:14 +08:00
save push
This commit is contained in:
parent
58b448dc0b
commit
906f972d36
@ -341,13 +341,28 @@ class MambaCache(_BaseCache):
|
||||
self.cache = v
|
||||
|
||||
|
||||
class Mamba2Cache:
|
||||
def __init__(self, batch_size, conv_dim, kernel_size, num_heads, head_dim, state_size):
|
||||
self.conv_states = mx.zeros((batch_size, conv_dim, kernel_size - 1))
|
||||
self.ssm_states = mx.zeros((batch_size, num_heads, head_dim, state_size))
|
||||
self.seqlen_offset = 0
|
||||
|
||||
def update(self, new_conv_state, new_ssm_state):
|
||||
self.conv_states = new_conv_state
|
||||
self.ssm_states = new_ssm_state
|
||||
self.seqlen_offset += 1
|
||||
class Mamba2Cache(_BaseCache):
|
||||
def __init__(
|
||||
self,
|
||||
batch_size,
|
||||
conv_kernel
|
||||
):
|
||||
self.conv_kernel: mx.array = conv_kernel
|
||||
self.conv_states: mx.array = [None]
|
||||
self.ssm_states = [None]
|
||||
self.seqlen_offset = 0
|
||||
|
||||
def reset(self):
|
||||
self.conv_states = None
|
||||
self.ssm_state = None
|
||||
|
||||
def update(self, layer_idx: int, new_conv_state: mx.array, cache_position: mx.array) -> mx.array:
|
||||
conv_state = self.conv_states[layer_idx]
|
||||
cache_position = cache_position.clamp(0, self.conv_kernel - 1)
|
||||
|
||||
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
||||
conv_state[:, :, cache_position] = new_conv_state
|
||||
self.conv_states[layer_idx].zero_()
|
||||
self.conv_states[layer_idx] += conv_state
|
||||
return self.conv_states[layer_idx]
|
@ -1,424 +0,0 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
use_cache: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
intermediate_size: int = None
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
||||
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
def selective_scan(x, A, B, C, chunk_size):
|
||||
"""
|
||||
Selective scan implementation for training.
|
||||
|
||||
Arguments
|
||||
x: (batch, seqlen, n_heads, d_head)
|
||||
A: (batch, seqlen, n_heads)
|
||||
B: (batch, seqlen, n_heads, d_state)
|
||||
C: (batch, seqlen, n_heads, d_state)
|
||||
|
||||
Return
|
||||
y: (batch, seqlen, n_heads, d_head)
|
||||
"""
|
||||
assert x.shape[1] % chunk_size == 0
|
||||
|
||||
# Reshape into chunks
|
||||
def chunk_reshape(m):
|
||||
shape = list(m.shape)
|
||||
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
||||
return m.reshape(shape)
|
||||
|
||||
x, A, B, C = map(chunk_reshape, (x, A, B, C))
|
||||
A = mx.transpose(A, [0, 3, 1, 2])
|
||||
|
||||
# Compute cumulative sums
|
||||
A_cumsum = mx.cumsum(A, axis=-1)
|
||||
|
||||
# Process chunks
|
||||
L = mx.exp(selective_cumsum(A))
|
||||
Y_diag = mx.einsum('bclhn,bcshn,bhcls,bcshp->bclhp', C, B, L, x)
|
||||
|
||||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||||
states = mx.einsum('bclhn,bhcl,bclhp->bchpn', B, decay_states, x)
|
||||
|
||||
initial_states = mx.zeros_like(states[:, :1])
|
||||
states = mx.concatenate([initial_states, states], axis=1)
|
||||
decay_chunk = mx.exp(selective_cumsum(mx.pad(A_cumsum[..., -1], ((0,0), (0,0), (1,0)))))
|
||||
new_states = mx.einsum('bhzc,bchpn->bzhpn', decay_chunk, states)
|
||||
states = new_states[:, :-1]
|
||||
|
||||
state_decay_out = mx.exp(A_cumsum)
|
||||
Y_off = mx.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)
|
||||
|
||||
Y = (Y_diag + Y_off).reshape((-1, x.shape[1] * chunk_size, *Y_diag.shape[-2:]))
|
||||
return Y
|
||||
|
||||
def selective_cumsum(x: mx.array) -> mx.array:
|
||||
"""Stable selective cumulative sum calculation."""
|
||||
T = x.shape[-1]
|
||||
x = mx.repeat(x[..., None], T, axis=-1)
|
||||
mask = mx.tril(mx.ones((T, T)), k=-1)
|
||||
x = x * mask
|
||||
x_cumsum = mx.cumsum(x, axis=-2)
|
||||
mask = mx.tril(mx.ones((T, T)), k=0)
|
||||
return mx.where(mask, x_cumsum, float('-inf'))
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
# Project input to get various components [z, x, B, C, dt]
|
||||
projection_size = (2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads)
|
||||
self.in_proj = nn.Linear(
|
||||
args.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
# Convolution layer
|
||||
conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=conv_dim,
|
||||
out_channels=conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=conv_dim,
|
||||
padding=args.conv_kernel - 1,
|
||||
bias=args.use_conv_bias
|
||||
)
|
||||
|
||||
# SSM parameters
|
||||
self.dt_bias = mx.zeros(args.num_heads)
|
||||
self.A_log = mx.zeros(args.num_heads)
|
||||
self.D = mx.ones(args.num_heads)
|
||||
|
||||
# Output projections
|
||||
self.norm = nn.RMSNorm(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
def __call__(self, u: mx.array, cache=None) -> mx.array:
|
||||
# return self.forward_training(x) if x.shape[1] > 1 else self.forward_inference(x, cache)
|
||||
|
||||
# def forward_training(self, u: mx.array) -> mx.array:
|
||||
# # Reset cache during training
|
||||
# self.cache = None
|
||||
|
||||
# # Input projection and splitting
|
||||
# zxbcdt = self.in_proj(u)
|
||||
# z, xBC, dt = mx.split(
|
||||
# zxbcdt,
|
||||
# [
|
||||
# self.args.hidden_size,
|
||||
# self.args.hidden_size + 2 * self.args.state_size
|
||||
# ],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # Time step processing
|
||||
# dt = mx.clip(
|
||||
# nn.softplus(dt + self.dt_bias),
|
||||
# self.args.time_step_min,
|
||||
# self.args.time_step_max
|
||||
# )
|
||||
|
||||
# # Convolution processing
|
||||
# xBC_t = mx.transpose(xBC, [0, 2, 1])
|
||||
# conv_out = self.conv1d(xBC_t)
|
||||
# xBC = mx.transpose(conv_out, [0, 2, 1])[:, :u.shape[1]]
|
||||
# xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||||
|
||||
# # Split states
|
||||
# x, B, C = mx.split(
|
||||
# xBC,
|
||||
# [self.args.hidden_size, self.args.state_size],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # Reshape for selective scan
|
||||
# x = x.reshape((-1, x.shape[1], self.args.num_heads, self.args.head_dim))
|
||||
# A = -mx.exp(self.A_log)
|
||||
|
||||
# # Apply selective scan
|
||||
# y = selective_scan(
|
||||
# x * dt[..., None],
|
||||
# A * dt,
|
||||
# B[..., None, :],
|
||||
# C[..., None, :],
|
||||
# self.args.chunk_size
|
||||
# )
|
||||
|
||||
# # Output processing
|
||||
# y = y + x * self.D[None, None, :, None]
|
||||
# y = y.reshape((-1, y.shape[1], self.args.hidden_size))
|
||||
# y = self.norm(y, z)
|
||||
# y = self.out_proj(y)
|
||||
|
||||
# return y
|
||||
|
||||
# def forward_inference(self, u: mx.array, cache=None) -> mx.array:
|
||||
# """
|
||||
# u: (B, 1, D)
|
||||
# cache: (h_cache, conv_cache)
|
||||
# """
|
||||
# """Single token processing during inference."""
|
||||
# assert u.shape[1] == 1, "Inference mode expects single token"
|
||||
|
||||
# batch_size = u.shape[0]
|
||||
# # Use provided cache or create new one
|
||||
# self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||||
|
||||
# # Project input
|
||||
# zxbcdt = self.in_proj(u.squeeze(1)) # (B, 2D)
|
||||
# d_mlp = (zxbcdt.shape[-1] - 2 * self.args.hidden_size - 2 * self.args.n_groups * self.args.state_size - self.args.num_heads) // 2
|
||||
|
||||
# # (1, 768) (1, 0) (1, 0) (1, 256) (1, 0) (1, 3328)
|
||||
# y0, z0, x0, z, xBC, dt = mx.split(
|
||||
# zxbcdt,
|
||||
# [
|
||||
# d_mlp,
|
||||
# d_mlp,
|
||||
# self.args.hidden_size,
|
||||
# self.args.hidden_size + 2 * self.args.n_groups * self.args.state_size,
|
||||
# self.args.num_heads
|
||||
# ],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # Update convolution state and apply
|
||||
# conv_state = self.cache.update_conv_state(xBC)
|
||||
# xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1) # (B, D) (4, 1792)
|
||||
|
||||
# if self.args.use_conv_bias:
|
||||
# xBC = xBC + self.conv1d.bias
|
||||
|
||||
# xBC = mx.sigmoid(xBC) * xBC # SiLU (4, 1792)
|
||||
|
||||
# # Split states and ensure proper shapes
|
||||
# a0, x, B, C = mx.split(
|
||||
# xBC, # (4, 1792)
|
||||
# [
|
||||
# self.args.hidden_size,
|
||||
# self.args.n_groups * self.args.state_size,
|
||||
# self.args.n_groups * self.args.state_size
|
||||
# ],
|
||||
# axis=-1
|
||||
# )
|
||||
|
||||
# # SSM step with explicit shapes
|
||||
# A = -mx.exp(self.A_log) # (num_heads) (24,)
|
||||
# print(A.shape) # (24,)
|
||||
# print(dt.shape) # (1, 3328)
|
||||
# dA = mx.exp(dt * A[None, :]) # Shape: (batch_size, num_heads) <------- her eis the error
|
||||
|
||||
# # Reshape x considering intermediate size
|
||||
# # x shape should be (batch_size * num_heads, head_dim)
|
||||
# x = mx.reshape(x, (batch_size, self.args.num_heads, -1))
|
||||
# assert x.shape[-1] == self.args.head_dim, f"Head dimension mismatch: {x.shape[-1]} vs {self.args.head_dim}"
|
||||
|
||||
# B = mx.reshape(B, (batch_size, -1)) # Should be (batch_size, state_size)
|
||||
# C = mx.reshape(C, (batch_size, -1)) # Should be (batch_size, state_size)
|
||||
|
||||
# # Compute dBx with explicit shapes
|
||||
# dBx = mx.einsum('bh,bs,bhd->bhds', dt, B, x)
|
||||
|
||||
# ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||||
|
||||
# y = mx.einsum('bhds,bs->bhd', ssm_state, C)
|
||||
# y = y + x * self.D[None, :, None]
|
||||
# y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
||||
|
||||
# # Output processing
|
||||
# y = self.norm(y, z)
|
||||
|
||||
# if d_mlp > 0:
|
||||
# y = mx.cat([nn.silu(z0) * x0, y], axis=-1)
|
||||
|
||||
# y = self.out_proj(y)
|
||||
|
||||
# return mx.expand_dims(y, 1)
|
||||
|
||||
assert u.shape[1] == 1, "Inference mode expects single token"
|
||||
|
||||
batch_size = u.shape[0]
|
||||
# Use provided cache or create new one
|
||||
self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(u.squeeze(1)) # (B, projection_size)
|
||||
|
||||
# Calculate splits based on model dimensions
|
||||
d_mlp = self.args.intermediate_size
|
||||
d_state = self.args.state_size * self.args.n_groups
|
||||
|
||||
# Split the projection into its components
|
||||
splits = [
|
||||
d_mlp, # y0
|
||||
d_mlp, # z0
|
||||
self.args.hidden_size, # x0
|
||||
self.args.hidden_size, # z
|
||||
d_state * 2, # xBC (includes both B and C)
|
||||
self.args.num_heads # dt
|
||||
]
|
||||
|
||||
y0, z0, x0, z, xBC, dt = mx.split(zxbcdt, splits[:-1], axis=-1)
|
||||
|
||||
# Update convolution state and apply
|
||||
conv_state = self.cache.update_conv_state(xBC)
|
||||
xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1)
|
||||
|
||||
if self.args.use_conv_bias:
|
||||
xBC = xBC + self.conv1d.bias
|
||||
|
||||
xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||||
|
||||
# Split states and reshape
|
||||
x, BC = mx.split(xBC, [self.args.intermediate_size], axis=-1)
|
||||
B, C = mx.split(BC, [d_state], axis=-1)
|
||||
|
||||
# Reshape for SSM computation
|
||||
x = mx.reshape(x, (batch_size, self.args.num_heads, -1)) # (B, H, head_dim)
|
||||
B = mx.reshape(B, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
||||
C = mx.reshape(C, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
||||
|
||||
# Process dt to match expected shape
|
||||
dt = mx.reshape(dt, (batch_size, self.args.num_heads)) # (B, H)
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
|
||||
# SSM step
|
||||
A = -mx.exp(self.A_log) # (H,)
|
||||
dA = mx.exp(dt * A[None, :]) # (B, H)
|
||||
|
||||
# Compute dBx
|
||||
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, x)
|
||||
|
||||
# Update SSM state and compute output
|
||||
ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||||
y = mx.einsum('bhds,bhs->bhd', ssm_state, C)
|
||||
y = y + x * self.D[None, :, None]
|
||||
|
||||
# Reshape output
|
||||
y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
||||
|
||||
# Final output processing
|
||||
y = self.norm(y, z)
|
||||
|
||||
if d_mlp > 0:
|
||||
y = mx.concat([nn.silu(z0) * x0, y], axis=-1)
|
||||
|
||||
y = self.out_proj(y)
|
||||
|
||||
return mx.expand_dims(y, 1) # (B, 1, D)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
# x : (B, L, D)
|
||||
return self.mixer(self.norm(x), cache) + x # (B, L, D)
|
||||
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
# x : (B, L)
|
||||
x = self.embeddings(x)
|
||||
# x : (B, L, D)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, layer_cache in zip(self.layers, cache):
|
||||
x = layer(x, layer_cache)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.backbone = Mamba2Model(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None) -> mx.array:
|
||||
# inputs : (B, L)
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(
|
||||
batch_size=batch_size,
|
||||
hidden_size=self.args.hidden_size,
|
||||
state_size=self.args.state_size,
|
||||
conv_kernel=self.args.conv_kernel,
|
||||
num_heads=self.args.num_heads,
|
||||
head_dim=self.args.head_dim
|
||||
) for _ in range(len(self.backbone.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
@ -1,288 +0,0 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str = "mamba2"
|
||||
num_heads: int = 128
|
||||
head_dim: int = 64
|
||||
vocab_size: int = 32768
|
||||
hidden_size: int = 4096
|
||||
state_size: int = 128
|
||||
num_hidden_layers: int = 64
|
||||
layer_norm_epsilon: float = 1e-5
|
||||
expand: int = 2
|
||||
conv_kernel: int = 4
|
||||
n_groups: int = 8
|
||||
use_bias: bool = False
|
||||
use_conv_bias: bool = True
|
||||
initializer_range: float = 0.1
|
||||
residual_in_fp32: bool = True
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
time_step_min: float = 0.001
|
||||
time_step_max: float = 0.1
|
||||
time_step_floor: float = 1e-4
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
rescale_prenorm_residual: bool = False
|
||||
use_cache: bool = True
|
||||
rms_norm: bool = True
|
||||
chunk_size: int = 256
|
||||
tie_word_embeddings: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class Mamba2Cache:
|
||||
def __init__(self):
|
||||
self.cache = [None, None]
|
||||
|
||||
def __setitem__(self, idx, value):
|
||||
self.cache[idx] = value
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.cache[idx]
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
return self.cache
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
# Ensure in_channels and out_channels are the same for depthwise conv
|
||||
assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution"
|
||||
# Ensure groups is equal to in_channels for depthwise conv
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
# Initialize weight with shape (out_channels, kernel_size, 1)
|
||||
self.weight = mx.random.normal((out_channels, kernel_size, 1))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x, cache=None):
|
||||
B, L, C = x.shape
|
||||
_, K, _ = self.weight.shape
|
||||
|
||||
if cache is not None:
|
||||
x = mx.concatenate([cache, x], axis=1)
|
||||
else:
|
||||
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
||||
|
||||
y = mx.conv_general(x, self.weight, groups=self.groups)
|
||||
|
||||
if self.bias is not None:
|
||||
y = y + self.bias
|
||||
|
||||
return y, x[:, -K + 1 :, :]
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.intermediate_size = args.intermediate_size
|
||||
self.time_step_rank = args.time_step_rank
|
||||
self.conv_kernel_size = args.conv_kernel
|
||||
self.hidden_size = args.hidden_size
|
||||
self.state_size = args.state_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.hidden_size // args.num_heads
|
||||
self.n_groups = args.n_groups
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
bias=args.use_conv_bias,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.dt_bias = mx.ones((self.num_heads,))
|
||||
self.A_log = mx.log(mx.arange(1, self.num_heads + 1))
|
||||
self.D = mx.ones((self.num_heads,))
|
||||
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
|
||||
|
||||
def ssm_step(self, x, state, dt_proj):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
delta = nn.softplus(dt_proj + self.dt_bias)
|
||||
|
||||
B, C = mx.split(x, indices_or_sections=[self.state_size * self.n_groups], axis=-1)
|
||||
|
||||
B = B.reshape(-1, self.n_groups, self.state_size)
|
||||
C = C.reshape(-1, self.n_groups, self.state_size)
|
||||
|
||||
if state is None:
|
||||
new_state = mx.expand_dims(delta, -1) * B
|
||||
else:
|
||||
new_state = mx.expand_dims(delta, -1) * (B + state * mx.exp(mx.expand_dims(delta, -1) * A))
|
||||
|
||||
y = mx.sum(new_state * C, axis=-1)
|
||||
y = y + D * x[:, :self.num_heads]
|
||||
return y, new_state
|
||||
|
||||
def __call__(self, x, cache):
|
||||
B, T, D = x.shape
|
||||
if cache is None:
|
||||
cache = [None, None]
|
||||
|
||||
outputs = []
|
||||
for t in range(T):
|
||||
xt = x[:, t, :]
|
||||
xz = self.in_proj(xt)
|
||||
|
||||
x_t, z_t, dt_proj = mx.split(
|
||||
xz,
|
||||
indices_or_sections=[self.conv_dim, self.conv_dim + self.intermediate_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
||||
x_t = conv_out.squeeze(1)
|
||||
x_t = nn.silu(x_t)
|
||||
y_t, cache[1] = self.ssm_step(x_t, cache[1], dt_proj)
|
||||
z_t = nn.silu(z_t)
|
||||
|
||||
# Print shapes for debugging
|
||||
print(f"y_t shape: {y_t.shape}")
|
||||
print(f"z_t shape: {z_t.shape}")
|
||||
|
||||
# Reshape y_t to (B, num_heads, head_dim)
|
||||
y_t_reshaped = y_t.reshape(B, self.num_heads, -1)
|
||||
|
||||
# Reshape z_t to (B, num_heads, intermediate_size // num_heads)
|
||||
z_t_reshaped = z_t.reshape(B, self.num_heads, -1)
|
||||
|
||||
print(f"y_t_reshaped shape: {y_t_reshaped.shape}")
|
||||
print(f"z_t_reshaped shape: {z_t_reshaped.shape}")
|
||||
|
||||
# Element-wise multiplication (broadcasting across the last dimension)
|
||||
output_t = y_t_reshaped * z_t_reshaped
|
||||
|
||||
# Reshape to match the expected input of out_proj
|
||||
output_t = output_t.reshape(B, -1)
|
||||
|
||||
print(f"output_t shape before out_proj: {output_t.shape}")
|
||||
print(f"out_proj weight shape: {self.out_proj.weight.shape}")
|
||||
|
||||
output_t = self.out_proj(output_t)
|
||||
outputs.append(output_t)
|
||||
|
||||
output = mx.stack(outputs, axis=1)
|
||||
return output
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Mixer(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None
|
||||
):
|
||||
hidden_states = self.embeddings(inputs)
|
||||
|
||||
if cache is None:
|
||||
cache = Mamba2Cache(len(self.layers))
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states = layer(hidden_states, cache[i])
|
||||
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.backbone = Mamba2(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
def make_cache(self, batch_size: int = 1):
|
||||
return [Mamba2Cache() for _ in range(len(self.layers))]
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
449
llms/mlx_lm/models/mamba2-prch-minimal.py
Normal file
449
llms/mlx_lm/models/mamba2-prch-minimal.py
Normal file
@ -0,0 +1,449 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch MAMBA2 model."""
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
|
||||
"""
|
||||
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
||||
|
||||
Assumes that we only have tensors of either size 4 or 3
|
||||
"""
|
||||
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
|
||||
|
||||
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
|
||||
|
||||
|
||||
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
|
||||
"""
|
||||
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
|
||||
simultaneously splitting it into chunk sequences.
|
||||
|
||||
Assumes that we only have tensors of either size 4 or 3
|
||||
"""
|
||||
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
|
||||
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
|
||||
|
||||
if len(input_tensor.shape) == 3:
|
||||
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
|
||||
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
|
||||
else:
|
||||
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
|
||||
return input_tensor.reshape(
|
||||
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
|
||||
)
|
||||
|
||||
|
||||
def segment_sum(input_tensor):
|
||||
"""
|
||||
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
|
||||
"""
|
||||
chunk_size = input_tensor.size(-1)
|
||||
# 1. expand input tensor to have an additional dimension and repeat along that dimension
|
||||
# [..., chunk_size] -> [..., chunk_size, chunk_size]
|
||||
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
|
||||
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
|
||||
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
|
||||
input_tensor = input_tensor.masked_fill(~mask, 0)
|
||||
# 3. compute actual cumsum
|
||||
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
|
||||
|
||||
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
|
||||
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
|
||||
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
|
||||
return tensor_segsum
|
||||
|
||||
|
||||
class Mamba2Cache:
|
||||
"""
|
||||
Arguments:
|
||||
config: ModelArgs
|
||||
batch_size: int
|
||||
dtype: torch.dtype
|
||||
device: torch.device
|
||||
|
||||
Attributes:
|
||||
seqlen_offset: int
|
||||
dtype: torch.dtype
|
||||
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel]
|
||||
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, config: ModelArgs, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
self.conv_kernel = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * config.hidden_size)
|
||||
|
||||
self.conv_states = {
|
||||
i: torch.zeros(
|
||||
batch_size,
|
||||
self.intermediate_size + 2 * config.n_groups * config.state_size,
|
||||
self.conv_kernel,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.ssm_states = {
|
||||
i: torch.zeros(
|
||||
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
|
||||
def update_conv_state(
|
||||
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
||||
) -> torch.Tensor:
|
||||
conv_state = self.conv_states[layer_idx]
|
||||
cache_position = cache_position.clamp(0, self.conv_kernel - 1)
|
||||
|
||||
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
||||
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
||||
self.conv_states[layer_idx].zero_()
|
||||
self.conv_states[layer_idx] += conv_state
|
||||
return self.conv_states[layer_idx]
|
||||
|
||||
def reset(self):
|
||||
self.conv_states.zero_()
|
||||
self.ssm_states.zero_()
|
||||
|
||||
|
||||
class MambaRMSNormGated(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states
|
||||
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.state_size = config.state_size
|
||||
self.conv_kernel = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * self.hidden_size)
|
||||
self.time_step_rank = int(config.time_step_rank)
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
|
||||
self.layer_norm_epsilon = config.layer_norm_epsilon
|
||||
|
||||
self.n_groups = config.n_groups
|
||||
self.head_dim = config.head_dim
|
||||
self.chunk_size = config.chunk_size
|
||||
|
||||
self.time_step_limit = config.time_step_limit
|
||||
self.time_step_min = config.time_step_min
|
||||
self.time_step_max = config.time_step_max
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
bias=config.use_conv_bias,
|
||||
kernel_size=config.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=config.conv_kernel - 1,
|
||||
)
|
||||
|
||||
# projection of the input hidden states
|
||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=config.use_bias,
|
||||
)
|
||||
|
||||
self.dt_bias = torch.ones(self.num_heads)
|
||||
A = torch.arange(1, self.num_heads + 1)
|
||||
self.A_log = torch.log(A)
|
||||
self.D = torch.ones(self.num_heads)
|
||||
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
|
||||
def forward(self, input_states, cache: Optional[Mamba2Cache]=None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
# Gated MLP's linear projection
|
||||
projected_states = self.in_proj(input_states.squeeze(1))
|
||||
d_mlp = (
|
||||
projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.state_size- self.num_heads) // 2
|
||||
_, _, gate, hidden_states, dt = projected_states.split(
|
||||
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
||||
)
|
||||
|
||||
# Convolution sequence transformation
|
||||
ssm_state = cache.ssm_states[self.layer_idx].clone()
|
||||
ssm_state = ssm_state.to(hidden_states.device)
|
||||
|
||||
if cache.seqlen_offset > 0:
|
||||
conv_state = cache.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel]
|
||||
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
||||
|
||||
# handle batched generation - states are copied through
|
||||
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
|
||||
cache.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
hidden_states = nn.silu(hidden_states)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
else:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
conv_state = nn.functional.pad(
|
||||
hidden_states,
|
||||
(self.conv_kernel - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = nn.silu(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
|
||||
|
||||
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.state_size, self.n_groups * self.state_size], dim=-1)
|
||||
A = -torch.exp(self.A_log.float()) # [num_heads]
|
||||
|
||||
if cache is not None and cache.seqlen_offset > 0:
|
||||
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||||
# for batched generation
|
||||
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
|
||||
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
|
||||
|
||||
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
|
||||
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
|
||||
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.state_size).to(dtype=torch.float32)
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dA = torch.exp(dt[..., None] * A)
|
||||
|
||||
# Discretize B
|
||||
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
|
||||
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
|
||||
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
|
||||
B = B.reshape(batch_size, -1, B.shape[-1])
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dB = dt[..., None] * B[..., None, :]
|
||||
|
||||
# Discretize x into dB
|
||||
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
||||
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
|
||||
dBx = dB * hidden_states[..., None]
|
||||
|
||||
# State calculation
|
||||
cache.ssm_states[self.layer_idx].copy_(
|
||||
cache.ssm_states[self.layer_idx] * dA + dBx
|
||||
)
|
||||
|
||||
# Subsequent output
|
||||
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
|
||||
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
|
||||
C = C.reshape(batch_size, -1, C.shape[-1])
|
||||
# [bsz, num_heads, head_dim]
|
||||
|
||||
ssm_states = cache.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
|
||||
# Reshape ssm_states to merge the first two dimensions
|
||||
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.state_size) # Shape: [b*h, d, n]
|
||||
C_reshaped = C.view(batch_size * self.num_heads, self.state_size, 1) # Shape: [b*h, n, 1]
|
||||
y = torch.bmm(ssm_states_reshaped, C_reshaped)
|
||||
y = y.view(batch_size, self.num_heads, self.head_dim)
|
||||
|
||||
# D skip connection
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
|
||||
y = (y + hidden_states * D).to(y.dtype)
|
||||
|
||||
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
||||
y = y.reshape(batch_size, -1)[:, None, ...]
|
||||
else:
|
||||
# begin ssd naive implementation without einsums
|
||||
dt = nn.functional.softplus(dt + self.dt_bias)
|
||||
dt = torch.clamp(dt, self.time_step_min)
|
||||
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
|
||||
B = B.reshape(batch_size, seq_len, -1, self.state_size).float()
|
||||
C = C.reshape(batch_size, seq_len, -1, self.state_size).float()
|
||||
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
|
||||
|
||||
# Discretize x and A
|
||||
hidden_states = hidden_states * dt[..., None]
|
||||
A = A.to(hidden_states.dtype) * dt
|
||||
|
||||
# Rearrange into blocks/chunks
|
||||
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
|
||||
|
||||
|
||||
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
||||
A = A.permute(0, 3, 1, 2)
|
||||
A_cumsum = torch.cumsum(A, dim=-1)
|
||||
|
||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||||
# This is the analog of a causal mask
|
||||
L = torch.exp(segment_sum(A))
|
||||
|
||||
# First, contraction of C and B to get G (attention-weights like)
|
||||
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
|
||||
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
|
||||
|
||||
|
||||
# Step 2: Compute M, equivalent to applying attention mask to weights
|
||||
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
|
||||
M = M_intermediate.sum(dim=-1)
|
||||
|
||||
# Step 3: Compute Y_diag (apply to values)
|
||||
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
|
||||
|
||||
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||||
|
||||
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
||||
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
|
||||
# permute back B * decay states
|
||||
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
|
||||
if cache is not None and cache.seqlen_offset > 0:
|
||||
previous_states = cache.ssm_states[self.layer_idx][:, None, ...]
|
||||
else:
|
||||
previous_states = torch.zeros_like(states[:, :1])
|
||||
states = torch.cat([previous_states, states], dim=1)
|
||||
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
||||
|
||||
states_permuted = states.permute(0, 2, 1, 3, 4)
|
||||
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
|
||||
new_states = result.permute(0, 2, 1, 3, 4)
|
||||
states, ssm_state = new_states[:, :-1], new_states[:, -1]
|
||||
|
||||
# Compute state -> output conversion per chunk
|
||||
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||||
state_decay_out = torch.exp(A_cumsum)
|
||||
# compute Yoff
|
||||
C_times_states = (C[..., None, :] * states[:, :, None, ...])
|
||||
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
|
||||
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
|
||||
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||||
|
||||
y = Y_diag + Y_off
|
||||
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
||||
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
|
||||
|
||||
y = y + D_residual
|
||||
# Cutting off padded chunks
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len, :, :]
|
||||
y = y.reshape(batch_size, seq_len, -1)
|
||||
if ssm_state is not None and cache is not None:
|
||||
cache.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
scan_output = self.norm(y, gate)
|
||||
# end ssd naive
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_output) # [batch, seq_len, hidden_size]
|
||||
return contextualized_states
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = Mamba2Mixer(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cache: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
x = self.mixer(
|
||||
self.norm(hidden_states), cache=cache, cache_position=cache_position
|
||||
)
|
||||
return x + hidden_states
|
||||
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
cache: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
for mixer_block in self.layers:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache=cache,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
|
||||
cache.seqlen_offset += inputs_embeds.shape[1]
|
||||
return self.norm_f(hidden_states), cache
|
||||
|
||||
|
||||
|
||||
class Mamba2ForCausalLM(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = Mamba2Model(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
cache: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.Tensor] = None,
|
||||
):
|
||||
out, cache = self.backbone(
|
||||
input_ids,
|
||||
cache=cache,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
logits = self.lm_head(out)
|
||||
return logits, cache
|
@ -23,9 +23,42 @@ import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...utils import (
|
||||
ModelOutput,
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
)
|
||||
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available
|
||||
from .configuration_mamba2 import Mamba2Config
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
if is_mamba_2_ssm_available():
|
||||
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
||||
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
|
||||
else:
|
||||
selective_state_update = None
|
||||
|
||||
if is_causal_conv1d_available():
|
||||
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
||||
else:
|
||||
causal_conv1d_update, causal_conv1d_fn = None, None
|
||||
|
||||
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1"
|
||||
_CONFIG_FOR_DOC = "Mamba2Config"
|
||||
|
||||
|
||||
# Helper methods for segment sum computation
|
||||
|
||||
|
||||
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
|
||||
"""
|
||||
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
||||
@ -80,7 +113,7 @@ def segment_sum(input_tensor):
|
||||
class Mamba2Cache:
|
||||
"""
|
||||
Arguments:
|
||||
config: ModelArgs
|
||||
config: Mamba2Config
|
||||
batch_size: int
|
||||
dtype: torch.dtype
|
||||
device: torch.device
|
||||
@ -93,7 +126,7 @@ class Mamba2Cache:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, config: ModelArgs, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
@ -116,6 +149,8 @@ class Mamba2Cache:
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
def update_conv_state(
|
||||
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
||||
@ -142,18 +177,25 @@ class MambaRMSNormGated(torch.nn.Module):
|
||||
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate)
|
||||
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
|
||||
return self.weight * hidden_states
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
"""
|
||||
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
||||
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
||||
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
||||
and is why Mamba is called **selective** state spaces)
|
||||
"""
|
||||
|
||||
def __init__(self, config: Mamba2Config, layer_idx: int):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
@ -161,8 +203,10 @@ class Mamba2Mixer(nn.Module):
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * self.hidden_size)
|
||||
self.time_step_rank = int(config.time_step_rank)
|
||||
self.layer_idx = layer_idx
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
self.act = nn.silu
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
self.layer_norm_epsilon = config.layer_norm_epsilon
|
||||
self.rms_norm = config.rms_norm
|
||||
@ -192,23 +236,178 @@ class Mamba2Mixer(nn.Module):
|
||||
projection_size,
|
||||
bias=config.use_bias,
|
||||
)
|
||||
# selective projection used to make dt, B and C input dependant
|
||||
|
||||
self.dt_bias = torch.ones(self.num_heads)
|
||||
# time step projection (discretization)
|
||||
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
||||
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
|
||||
|
||||
# S4D real initialization. These are not discretized!
|
||||
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
||||
A = torch.arange(1, self.num_heads + 1)
|
||||
self.A_log = torch.log(A)
|
||||
self.D = torch.ones(self.num_heads)
|
||||
|
||||
self.A_log = nn.Parameter(torch.log(A))
|
||||
self.A_log._no_weight_decay = True
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.D = nn.Parameter(torch.ones(self.num_heads))
|
||||
self.D._no_weight_decay = True
|
||||
|
||||
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None):
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.use_bias = config.use_bias
|
||||
|
||||
if not is_fast_path_available:
|
||||
logger.warning_once(
|
||||
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
|
||||
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
|
||||
" https://github.com/Dao-AILab/causal-conv1d"
|
||||
)
|
||||
|
||||
def cuda_kernels_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
# set up dimensions for reshapes later
|
||||
|
||||
batch_size, seq_len, _ = hidden_states.shape
|
||||
groups_time_state_size = self.n_groups * self.ssm_state_size
|
||||
d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads
|
||||
|
||||
# getting projected states from cache if it exists
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
|
||||
d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2
|
||||
split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads]
|
||||
_, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1)
|
||||
|
||||
hidden_states_B_C = causal_conv1d_update(
|
||||
hidden_states_B_C,
|
||||
cache_params.conv_states[self.layer_idx],
|
||||
self.conv1d.weight.squeeze(1),
|
||||
self.conv1d.bias,
|
||||
self.activation,
|
||||
)
|
||||
|
||||
hidden_states, B, C = torch.split(
|
||||
hidden_states_B_C,
|
||||
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
|
||||
dim=-1,
|
||||
)
|
||||
A = -torch.exp(self.A_log.float()) # (nheads,)
|
||||
|
||||
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
||||
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
|
||||
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
|
||||
D = self.D[:, None, ...].expand(-1, self.head_dim)
|
||||
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
|
||||
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
|
||||
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
|
||||
hidden_states = selective_state_update(
|
||||
cache_params.ssm_states[self.layer_idx],
|
||||
hidden_states_reshaped,
|
||||
dt,
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
D,
|
||||
z=None,
|
||||
dt_bias=dt_bias,
|
||||
dt_softplus=True,
|
||||
)
|
||||
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
|
||||
hidden_states = self.norm(hidden_states, gate)
|
||||
out = self.out_proj(hidden_states)[:, None, ...]
|
||||
# if no cache is found, calling the kernel
|
||||
else:
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
dtype = hidden_states.dtype
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
# 1. Gated MLP's linear projection
|
||||
projected_states = self.in_proj(hidden_states)
|
||||
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
|
||||
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
|
||||
|
||||
if self.training and cache_params is None:
|
||||
out, ssm_state = mamba_split_conv1d_scan_combined(
|
||||
projected_states,
|
||||
self.conv1d.weight.squeeze(1),
|
||||
self.conv1d.bias,
|
||||
self.dt_bias,
|
||||
A,
|
||||
D=self.D,
|
||||
chunk_size=self.chunk_size,
|
||||
seq_idx=None, # was seq_idx
|
||||
activation=self.activation,
|
||||
rmsnorm_weight=self.norm.weight,
|
||||
rmsnorm_eps=self.norm.variance_epsilon,
|
||||
outproj_weight=self.out_proj.weight,
|
||||
outproj_bias=self.out_proj.bias,
|
||||
headdim=self.head_dim,
|
||||
ngroups=self.n_groups,
|
||||
norm_before_gate=False,
|
||||
return_final_states=True,
|
||||
**dt_limit_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
gate, hidden_states_B_C, time_step = torch.split(
|
||||
projected_states,
|
||||
[self.intermediate_size, self.conv_dim, self.num_heads],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
time_step = nn.functional.softplus(time_step + self.dt_bias)
|
||||
# 1D Convolution
|
||||
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
|
||||
hidden_states_B_C = self.act(
|
||||
self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len]
|
||||
) # (B, L, self.d_inner + 2 * ngroups * d_state)
|
||||
else:
|
||||
hidden_states_B_C = causal_conv1d_fn(
|
||||
x=hidden_states_B_C.transpose(1, 2),
|
||||
weight=self.conv1d.weight.squeeze(1),
|
||||
bias=self.conv1d.bias,
|
||||
activation=self.activation,
|
||||
).transpose(1, 2)[:, :seq_len]
|
||||
hidden_states, B, C = torch.split(
|
||||
hidden_states_B_C,
|
||||
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
|
||||
dim=-1,
|
||||
)
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
dtype = hidden_states.dtype
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
scan_output, ssm_state = mamba_chunk_scan_combined(
|
||||
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
|
||||
time_step,
|
||||
A,
|
||||
B.view(batch_size, seq_len, self.n_groups, -1),
|
||||
C.view(batch_size, seq_len, self.n_groups, -1),
|
||||
chunk_size=self.chunk_size,
|
||||
D=self.D,
|
||||
z=None,
|
||||
seq_idx=None,
|
||||
return_final_states=True,
|
||||
**dt_limit_kwargs,
|
||||
)
|
||||
if ssm_state is not None and cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
scan_output = scan_output.view(batch_size, seq_len, -1)
|
||||
# Multiply "gate" branch and apply extra normalization layer
|
||||
scan_output = self.norm(scan_output, gate)
|
||||
out = self.out_proj(scan_output)
|
||||
return out
|
||||
|
||||
# fmt: off
|
||||
def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
dtype = input_states.dtype
|
||||
|
||||
# Gated MLP's linear projection
|
||||
projected_states = self.in_proj(input_states.squeeze(1))
|
||||
d_mlp = (
|
||||
projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||||
_, _, gate, hidden_states, dt = projected_states.split(
|
||||
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
||||
)
|
||||
@ -223,10 +422,10 @@ class Mamba2Mixer(nn.Module):
|
||||
# handle batched generation - states are copied through
|
||||
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
hidden_states = self.act(hidden_states)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
else:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
conv_state = nn.functional.pad(
|
||||
@ -235,16 +434,18 @@ class Mamba2Mixer(nn.Module):
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
dtype = hidden_states.dtype
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
else:
|
||||
ssm_state = torch.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
|
||||
device=hidden_states.device
|
||||
device=hidden_states.device, dtype=dtype
|
||||
)
|
||||
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
||||
|
||||
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
|
||||
A = -torch.exp(self.A_log.float()) # [num_heads]
|
||||
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||||
# for batched generation
|
||||
@ -384,8 +585,25 @@ class Mamba2Mixer(nn.Module):
|
||||
# end ssd naive
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_output) # [batch, seq_len, hidden_size]
|
||||
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
|
||||
return contextualized_states
|
||||
# fmt: on
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
|
||||
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
|
||||
dtype = hidden_states.dtype
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
|
||||
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
|
||||
|
||||
|
||||
class Mamba2RMSNorm(nn.Module):
|
||||
@ -399,47 +617,258 @@ class Mamba2RMSNorm(nn.Module):
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, config):
|
||||
def __init__(self, config, layer_idx):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.residual_in_fp32 = config.residual_in_fp32
|
||||
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = Mamba2Mixer(config)
|
||||
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
x = self.mixer(
|
||||
self.norm(hidden_states), cache_params=cache_params, cache_position=cache_position
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
||||
if self.residual_in_fp32:
|
||||
residual = residual.to(torch.float32)
|
||||
|
||||
hidden_states = self.mixer(
|
||||
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
||||
)
|
||||
return x + hidden_states
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
class Mamba2PreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = Mamba2Config
|
||||
base_model_prefix = "backbone"
|
||||
_no_split_modules = ["Mamba2Block"]
|
||||
supports_gradient_checkpointing = True
|
||||
_is_stateful = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, Mamba2Mixer):
|
||||
module.A_log._no_weight_decay = True
|
||||
module.D._no_weight_decay = True
|
||||
|
||||
dt = torch.exp(
|
||||
torch.rand(self.config.num_heads)
|
||||
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
||||
+ math.log(self.config.time_step_min)
|
||||
).clamp(min=self.config.time_step_floor)
|
||||
|
||||
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
module.dt_bias.copy_(inv_dt)
|
||||
module.dt_bias._no_reinit = True
|
||||
|
||||
if isinstance(module, nn.Linear):
|
||||
if module.bias is not None:
|
||||
if not getattr(module.bias, "_no_reinit", False):
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
||||
|
||||
if self.config.rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["out_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(self.config.num_hidden_layers)
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
|
||||
class Mamba2Output(ModelOutput):
|
||||
"""
|
||||
Class for the MAMBA2 model outputs.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
cache_params (`Mamba2Cache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
last_hidden_state: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[Mamba2Cache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
|
||||
class Mamba2CausalLMOutput(ModelOutput):
|
||||
"""
|
||||
Base class for causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
cache_params (`Mamba2Cache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[Mamba2Cache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
MAMBA2_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
MAMBA2_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
|
||||
`input_ids`.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
cache_params (`Mamba2Cache`, *optional*):
|
||||
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
||||
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
MAMBA2_START_DOCSTRING,
|
||||
)
|
||||
class Mamba2Model(Mamba2PreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
# Initialize weights and apply final processing
|
||||
self._register_load_state_dict_pre_hook(self.load_hook)
|
||||
self.post_init()
|
||||
|
||||
def load_hook(self, state_dict, prefix, *args):
|
||||
for k in state_dict:
|
||||
if "embedding." in k:
|
||||
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
||||
break
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.embeddings = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Mamba2Output,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[Tuple, Mamba2Output]:
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if self.gradient_checkpointing and self.training and use_cache:
|
||||
use_cache = False
|
||||
|
||||
if use_cache:
|
||||
if cache_params is None:
|
||||
@ -447,44 +876,206 @@ class Mamba2Model(nn.Module):
|
||||
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||||
)
|
||||
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
||||
elif cache_position is None:
|
||||
# cases when we do manual forward instead of using `model.generate` which will initiate
|
||||
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
||||
# hack to conjecture the current cache position
|
||||
raise ValueError(
|
||||
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
||||
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
||||
"be initialized for you automatically"
|
||||
)
|
||||
else:
|
||||
cache_params = None
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for mixer_block in self.layers:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache_params=cache_params,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
||||
)
|
||||
else:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache_params=cache_params,
|
||||
cache_position=cache_position,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if use_cache:
|
||||
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||||
|
||||
return self.norm_f(hidden_states), cache_params if use_cache else None
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
||||
|
||||
return Mamba2Output(
|
||||
last_hidden_state=hidden_states,
|
||||
cache_params=cache_params if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
|
||||
embeddings).
|
||||
""",
|
||||
MAMBA2_START_DOCSTRING,
|
||||
)
|
||||
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
|
||||
_tied_weights_keys = []
|
||||
|
||||
class Mamba2ForCausalLM(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = Mamba2Model(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.backbone.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
return self.backbone.set_input_embeddings(new_embeddings)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids,
|
||||
inputs_embeds=None,
|
||||
use_cache=None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
if inputs_embeds is not None:
|
||||
past_len = inputs_embeds.shape[1] + input_ids.shape[1]
|
||||
else:
|
||||
past_len = input_ids.shape[1]
|
||||
if use_cache:
|
||||
# `cache_position` should have been initialized in `generate`
|
||||
if cache_position is None:
|
||||
raise ValueError(
|
||||
"`cache_position` should not be None as it should have been initialized in "
|
||||
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
||||
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
||||
)
|
||||
# how do we detect that we are in decoding without cache?
|
||||
if cache_position[0] > 0:
|
||||
input_ids = input_ids[:, -1][..., None]
|
||||
attention_mask = attention_mask[:, -1][..., None]
|
||||
else:
|
||||
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
||||
# considering padding will be applied when input length is shorter, and truncation
|
||||
# will be applied when it is longer, so it will be equivalent to always have it match
|
||||
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
||||
cache_position = torch.arange(0, past_len, device=input_ids.device)
|
||||
# if the cache is not used, we also do have to extend the attention mask here
|
||||
# TODO there is likely a cleverer way to do this
|
||||
extended_mask = torch.ones(
|
||||
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||||
)
|
||||
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||||
cache_params = None
|
||||
|
||||
if attention_mask.shape[1] < past_len:
|
||||
# we have to update manually the attention mask if
|
||||
# we are in decoding without cache
|
||||
# and we don't have position_ids here
|
||||
# TODO but we should be able to use cache_position though at a later time
|
||||
extended_mask = torch.ones(
|
||||
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||||
)
|
||||
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||||
if inputs_embeds is not None and cache_params is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"attention_mask": attention_mask,
|
||||
"cache_params": cache_params,
|
||||
"use_cache": use_cache,
|
||||
"cache_position": cache_position,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Mamba2CausalLMOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
cache_position: Optional[torch.Tensor] = None,
|
||||
):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs, # for now we need this for generation
|
||||
) -> Union[Tuple, Mamba2CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
mamba2_outputs = self.backbone(
|
||||
input_ids,
|
||||
cache_params=cache_params,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
hidden_states = mamba2_outputs[0]
|
||||
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, mamba2_outputs.cache_params, mamba2_outputs.hidden_states
|
||||
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + mamba2_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return Mamba2CausalLMOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
cache_params=mamba2_outputs.cache_params,
|
||||
hidden_states=mamba2_outputs.hidden_states,
|
||||
)
|
||||
|
337
llms/mlx_lm/models/mamba2-works-hella-alow.py
Normal file
337
llms/mlx_lm/models/mamba2-works-hella-alow.py
Normal file
@ -0,0 +1,337 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
use_cache: bool = True
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
def silu(x):
|
||||
return x * mx.sigmoid(x)
|
||||
|
||||
def ssd(x, A, B, C, chunk_size):
|
||||
# Replace einsum operations with explicit reshape and matrix multiply
|
||||
batch, seqlen, nheads, dim = x.shape
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
C = mx.expand_dims(C, axis=2)
|
||||
|
||||
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
||||
outputs = []
|
||||
|
||||
for i in range(0, seqlen, chunk_size):
|
||||
chunk = slice(i, min(i + chunk_size, seqlen))
|
||||
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
|
||||
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
|
||||
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
|
||||
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
|
||||
|
||||
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
|
||||
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
|
||||
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
|
||||
outputs.append(y)
|
||||
|
||||
return mx.concatenate(outputs, axis=1), state
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
self.weight = mx.random.normal((in_channels, 1, kernel_size))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
B, L, C = x.shape
|
||||
K = self.kernel_size
|
||||
|
||||
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
|
||||
|
||||
if cache is not None and cache.conv_states[0] is not None:
|
||||
# Convert None to proper array if needed
|
||||
if isinstance(cache.conv_states[0], type(None)):
|
||||
cache.conv_states[0] = mx.zeros((B, K-1, C))
|
||||
x = mx.concatenate([cache.conv_states[0], x], axis=1)
|
||||
|
||||
# Process each channel independently
|
||||
outputs = []
|
||||
for c in range(C):
|
||||
x_c = x[:, :, c]
|
||||
x_c = mx.expand_dims(x_c, axis=1)
|
||||
|
||||
w_c = self.weight[c]
|
||||
if w_c.ndim == 2:
|
||||
w_c = mx.expand_dims(w_c, axis=0)
|
||||
elif w_c.ndim == 1:
|
||||
w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
|
||||
|
||||
# Apply convolution
|
||||
y_c = mx.conv_general(
|
||||
x_c,
|
||||
w_c,
|
||||
stride=1,
|
||||
padding=0
|
||||
)
|
||||
|
||||
if self.bias is not None:
|
||||
y_c = y_c + self.bias[c]
|
||||
|
||||
outputs.append(mx.squeeze(y_c, axis=1))
|
||||
|
||||
y = mx.stack(outputs, axis=-1)
|
||||
|
||||
# Update cache
|
||||
if cache is not None:
|
||||
cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
||||
|
||||
conv_dim = args.intermediate_size + 2 * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
in_channels=conv_dim,
|
||||
out_channels=conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=conv_dim,
|
||||
bias=args.use_conv_bias,
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
if args.rescale_prenorm_residual:
|
||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||
|
||||
def __call__(self, u: mx.array, cache=None):
|
||||
batch_size = u.shape[0]
|
||||
seq_len = u.shape[1]
|
||||
outputs = []
|
||||
|
||||
# Initialize states if needed
|
||||
if cache.conv_states[0] is None:
|
||||
conv_dim = self.args.intermediate_size + 2 * self.args.state_size
|
||||
cache.conv_states[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.conv_kernel - 1,
|
||||
conv_dim
|
||||
))
|
||||
|
||||
if cache.ssm_states[0] is None:
|
||||
cache.ssm_states[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.num_heads,
|
||||
self.args.head_dim,
|
||||
self.args.state_size
|
||||
))
|
||||
|
||||
for pos in range(seq_len):
|
||||
u_t = u[:, pos:pos+1, :]
|
||||
zxbcdt = self.in_proj(u_t)
|
||||
|
||||
n_heads = self.args.num_heads
|
||||
|
||||
z = zxbcdt[:, :, :self.args.intermediate_size]
|
||||
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
|
||||
dt = zxbcdt[:, :, -(n_heads):]
|
||||
|
||||
dt = mx.reshape(dt, (batch_size, n_heads))
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
xBC = self.conv1d(xBC, cache=cache)
|
||||
xBC = silu(xBC)
|
||||
|
||||
x = xBC[:, :, :self.args.intermediate_size]
|
||||
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
|
||||
C = xBC[:, :, -self.args.state_size:]
|
||||
|
||||
x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
|
||||
x = mx.squeeze(x, axis=1)
|
||||
|
||||
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
|
||||
B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
|
||||
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
|
||||
C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
|
||||
C = mx.expand_dims(C, axis=3)
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
x = mx.expand_dims(x, axis=3)
|
||||
dBx = mx.matmul(x, B)
|
||||
|
||||
cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
|
||||
|
||||
y = mx.matmul(cache.ssm_states[0], C)
|
||||
y = mx.squeeze(y, axis=-1)
|
||||
|
||||
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
|
||||
|
||||
y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
|
||||
y = self.norm(y + z)
|
||||
y = self.out_proj(y)
|
||||
outputs.append(y)
|
||||
|
||||
return mx.concatenate(outputs, axis=1)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.residual_in_fp32 = args.residual_in_fp32
|
||||
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
if self.residual_in_fp32:
|
||||
x = x.astype(mx.float32)
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(batch_size, self.args.conv_kernel) for _ in range(len(self.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
sanitized = {}
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k:
|
||||
# Ensure weights are in correct shape (channels, 1, kernel_size)
|
||||
if v.ndim == 2:
|
||||
v = mx.expand_dims(v, axis=1)
|
||||
elif v.ndim == 1:
|
||||
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
|
||||
sanitized[k] = v
|
||||
else:
|
||||
sanitized[k] = v
|
||||
return sanitized
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
@ -1,7 +1,6 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
@ -28,18 +27,17 @@ class ModelArgs(BaseModelArgs):
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
use_cache: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
intermediate_size: int = None
|
||||
use_cache: bool = True
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
||||
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
@ -49,256 +47,241 @@ class ModelArgs(BaseModelArgs):
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones(hidden_size)
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(mx.float32)
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate.to(mx.float32))
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * math.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
|
||||
def silu(x):
|
||||
return x * mx.sigmoid(x)
|
||||
|
||||
def ssd(x, A, B, C, chunk_size):
|
||||
# Replace einsum operations with explicit reshape and matrix multiply
|
||||
batch, seqlen, nheads, dim = x.shape
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
C = mx.expand_dims(C, axis=2)
|
||||
|
||||
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
||||
outputs = []
|
||||
|
||||
for i in range(0, seqlen, chunk_size):
|
||||
chunk = slice(i, min(i + chunk_size, seqlen))
|
||||
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
|
||||
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
|
||||
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
|
||||
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
|
||||
|
||||
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
||||
|
||||
# Replace einsum with explicit operations
|
||||
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
|
||||
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
|
||||
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
|
||||
outputs.append(y)
|
||||
|
||||
return mx.concatenate(outputs, axis=1), state
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.groups = groups if groups is not None else in_channels
|
||||
|
||||
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
|
||||
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||
|
||||
# Initialize weight with correct shape [C_out, 1, kernel_size]
|
||||
self.weight = mx.random.normal((out_channels, 1, kernel_size))
|
||||
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
B, L, C = x.shape
|
||||
K = self.kernel_size
|
||||
|
||||
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
|
||||
|
||||
# Handle caching for sequential processing
|
||||
if cache is not None and cache.conv_states[0] is not None:
|
||||
if isinstance(cache.conv_states[0], type(None)):
|
||||
cache.conv_states[0] = mx.zeros((B, K-1, C))
|
||||
x = mx.concatenate([cache.conv_states[0], x], axis=1)
|
||||
|
||||
# Process each channel independently
|
||||
outputs = []
|
||||
for c in range(C):
|
||||
# Extract and reshape the channel
|
||||
x_c = x[:, :, c] # [B, L]
|
||||
x_c = mx.expand_dims(x_c, axis=1) # [B, 1, L]
|
||||
|
||||
# Get weight for this channel - already in correct shape [1, 1, K]
|
||||
w_c = mx.expand_dims(self.weight[c], axis=0) # Ensure [1, 1, K]
|
||||
|
||||
# Apply convolution
|
||||
y_c = mx.conv_general(
|
||||
x_c,
|
||||
w_c,
|
||||
stride=1,
|
||||
padding=self.padding
|
||||
)
|
||||
|
||||
if self.bias is not None:
|
||||
y_c = y_c + self.bias[c]
|
||||
|
||||
outputs.append(mx.squeeze(y_c, axis=1))
|
||||
|
||||
y = mx.stack(outputs, axis=-1)
|
||||
|
||||
# Update cache
|
||||
if cache is not None:
|
||||
cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
# Model dimensions
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.ssm_state_size = args.state_size
|
||||
self.n_groups = args.n_groups
|
||||
self.intermediate_size = int(args.expand * args.hidden_size)
|
||||
|
||||
# Convolution parameters
|
||||
self.conv_kernel = args.conv_kernel
|
||||
self.use_conv_bias = args.use_conv_bias
|
||||
|
||||
# Time step parameters
|
||||
self.time_step_rank = int(args.time_step_rank)
|
||||
self.time_step_min = args.time_step_min
|
||||
self.time_step_max = args.time_step_max
|
||||
|
||||
# Processing parameters
|
||||
self.args = args
|
||||
|
||||
self.chunk_size = args.chunk_size
|
||||
self.layer_norm_epsilon = args.layer_norm_epsilon
|
||||
|
||||
# Calculate dimensions
|
||||
self.conv_dim = (self.intermediate_size +
|
||||
2 * self.n_groups * self.ssm_state_size)
|
||||
projection_size = (self.intermediate_size +
|
||||
self.conv_dim +
|
||||
self.num_heads)
|
||||
|
||||
# Initialize layers
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv1d = nn.Conv1d(
|
||||
|
||||
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
||||
|
||||
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=self.conv_kernel,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=self.conv_kernel - 1,
|
||||
bias=self.use_conv_bias
|
||||
bias=args.use_conv_bias,
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
# Initialize parameters
|
||||
self.dt_bias = mx.ones(self.num_heads)
|
||||
A = mx.arange(1, self.num_heads + 1)
|
||||
self.A_log = mx.log(A)
|
||||
self.D = mx.ones(self.num_heads)
|
||||
|
||||
# Output layers
|
||||
self.norm = MambaRMSNormGated(
|
||||
self.intermediate_size,
|
||||
eps=self.layer_norm_epsilon
|
||||
)
|
||||
self.out_proj = nn.Linear(
|
||||
self.intermediate_size,
|
||||
self.hidden_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
|
||||
def reshape_into_chunks(self, tensor, pad_size, chunk_size):
|
||||
if pad_size > 0:
|
||||
pad_shape = list(tensor.shape)
|
||||
pad_shape[1] = pad_size
|
||||
padding = mx.zeros(pad_shape, dtype=tensor.dtype)
|
||||
tensor = mx.concatenate([tensor, padding], axis=1)
|
||||
|
||||
chunk_shape = list(tensor.shape)
|
||||
chunk_shape[1] = -1
|
||||
chunk_shape.insert(2, chunk_size)
|
||||
return tensor.reshape(chunk_shape)
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
def segment_sum(self, x):
|
||||
return mx.cumsum(x, axis=-1)
|
||||
if args.rescale_prenorm_residual:
|
||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||
|
||||
def process_single_token(self, hidden_states, B, C, dt, cache):
|
||||
batch_size = hidden_states.shape[0]
|
||||
|
||||
# Process convolution state
|
||||
if cache is not None:
|
||||
conv_state = cache.conv_states
|
||||
# Roll the conv state and update the last position
|
||||
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
||||
# Create new conv state with updated last position
|
||||
new_conv_state = mx.array(conv_state)
|
||||
new_conv_state = new_conv_state.at[:, :, -1].add(hidden_states)
|
||||
conv_state = new_conv_state
|
||||
|
||||
# Compute convolution
|
||||
conv_out = mx.sum(conv_state * self.conv1d.weight[:, 0, :], axis=-1)
|
||||
if self.use_conv_bias:
|
||||
conv_out = conv_out + self.conv1d.bias
|
||||
|
||||
# Apply SiLU activation
|
||||
conv_out = mx.sigmoid(conv_out) * conv_out
|
||||
|
||||
else:
|
||||
# Initialize new cache
|
||||
conv_state = mx.zeros((batch_size, self.conv_dim, self.conv_kernel - 1))
|
||||
conv_out = self.conv1d(hidden_states)
|
||||
conv_out = mx.sigmoid(conv_out) * conv_out
|
||||
|
||||
# Process SSM
|
||||
def __call__(self, u: mx.array, cache=None):
|
||||
# Expect input shape: [batch_size, 1, hidden_size]
|
||||
batch_size, seq_len, _ = u.shape
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
# Initialize states if needed
|
||||
if cache.conv_states[0] is None:
|
||||
cache.conv_states[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.conv_kernel - 1,
|
||||
self.conv_dim
|
||||
))
|
||||
|
||||
if cache.ssm_states[0] is None:
|
||||
cache.ssm_states[0] = mx.zeros((
|
||||
batch_size,
|
||||
self.args.num_heads,
|
||||
self.args.head_dim,
|
||||
self.args.state_size
|
||||
))
|
||||
|
||||
# Project input
|
||||
zxbcdt = self.in_proj(u)
|
||||
|
||||
# Split projections
|
||||
z = zxbcdt[:, :, :self.args.intermediate_size]
|
||||
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
|
||||
dt = zxbcdt[:, :, -(self.args.num_heads):]
|
||||
|
||||
# Process delta time
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.args.num_heads))
|
||||
dt = mx.squeeze(dt, axis=0) # Remove sequence dimension for single token
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.time_step_min,
|
||||
self.time_step_max
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt * A[None, :])
|
||||
|
||||
if cache is not None:
|
||||
ssm_state = cache.ssm_states
|
||||
else:
|
||||
ssm_state = mx.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size)
|
||||
)
|
||||
|
||||
# Compute SSM updates
|
||||
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, hidden_states)
|
||||
next_state = ssm_state * dA[:, :, None, None] + dBx
|
||||
y = mx.einsum('bhds,bhs->bhd', next_state, C)
|
||||
|
||||
# Add skip connection
|
||||
y = y + hidden_states * self.D[None, :, None]
|
||||
|
||||
return y, conv_state, next_state
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
def process_long_sequence(self, hidden_states, B, C, dt, ssm_state):
|
||||
batch_size, seq_len = hidden_states.shape[:2]
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
# Reshape into chunks
|
||||
x_chunks = self.reshape_into_chunks(hidden_states, pad_size, self.chunk_size)
|
||||
B_chunks = self.reshape_into_chunks(B, pad_size, self.chunk_size)
|
||||
C_chunks = self.reshape_into_chunks(C, pad_size, self.chunk_size)
|
||||
|
||||
# Process time steps
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
dt = mx.clip(dt, self.time_step_min)
|
||||
|
||||
# Prepare matrices
|
||||
# Convolution step
|
||||
xBC = self.conv1d(xBC, cache=cache)
|
||||
xBC = silu(xBC)
|
||||
|
||||
# Split conv output
|
||||
x = xBC[:, :, :self.args.intermediate_size]
|
||||
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
|
||||
C = xBC[:, :, -self.args.state_size:]
|
||||
|
||||
# Reshape for SSM
|
||||
x = mx.reshape(x, (batch_size, 1, self.args.num_heads, self.args.head_dim))
|
||||
x = mx.squeeze(x, axis=1)
|
||||
|
||||
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
|
||||
B = mx.broadcast_to(B, (batch_size, self.args.num_heads, self.args.state_size))
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
|
||||
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
|
||||
C = mx.broadcast_to(C, (batch_size, self.args.num_heads, self.args.state_size))
|
||||
C = mx.expand_dims(C, axis=3)
|
||||
|
||||
# SSM state update
|
||||
A = -mx.exp(self.A_log)
|
||||
A = A * dt[:, None]
|
||||
|
||||
# Process chunks
|
||||
A_chunks = self.reshape_into_chunks(
|
||||
mx.broadcast_to(A, (batch_size, seq_len + pad_size, self.num_heads)),
|
||||
pad_size,
|
||||
self.chunk_size
|
||||
)
|
||||
|
||||
# Compute cumulative sums
|
||||
A_cumsum = mx.cumsum(A_chunks, axis=-1)
|
||||
L = mx.exp(self.segment_sum(A_chunks))
|
||||
|
||||
# Process diagonal blocks
|
||||
G = mx.einsum('...lhn,...shn->...lsh', C_chunks, B_chunks)
|
||||
M = G * L[..., None, :]
|
||||
Y_diag = mx.einsum('...lsh,...sh->...lh', M, x_chunks)
|
||||
|
||||
# Process off-diagonal blocks
|
||||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||||
B_decay = B_chunks * decay_states[..., None]
|
||||
states = mx.einsum('...shn,...sh->...hn', B_decay, x_chunks)
|
||||
|
||||
# Combine results
|
||||
y = Y_diag + states
|
||||
|
||||
# Remove padding if necessary
|
||||
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
x = mx.expand_dims(x, axis=3)
|
||||
dBx = mx.matmul(x, B)
|
||||
|
||||
cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
|
||||
|
||||
# Output computation
|
||||
y = mx.matmul(cache.ssm_states[0], C)
|
||||
y = mx.squeeze(y, axis=-1)
|
||||
|
||||
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len]
|
||||
|
||||
return y, ssm_state
|
||||
y = y[:, :seq_len, :, :]
|
||||
|
||||
# Final reshape and projections
|
||||
y = mx.reshape(y, (batch_size, 1, self.args.num_heads * self.args.head_dim))
|
||||
y = self.norm(y + z)
|
||||
|
||||
def __call__(self, x: mx.array, cache: Optional[Mamba2Cache] = None) -> mx.array:
|
||||
batch_size, seq_len, _ = x.shape
|
||||
|
||||
# Project input
|
||||
projected_states = self.in_proj(x.squeeze(1))
|
||||
|
||||
# Calculate d_mlp based on projection size
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 *
|
||||
self.n_groups * self.ssm_state_size - self.num_heads) // 2
|
||||
|
||||
# Split projections with corrected dimensions
|
||||
splits = [
|
||||
d_mlp, # z0
|
||||
d_mlp, # x0
|
||||
self.intermediate_size, # gate
|
||||
self.conv_dim, # hidden_states
|
||||
self.num_heads # dt
|
||||
]
|
||||
|
||||
z0, x0, x1, gate, hidden_states, dt = projected_states.split(splits, axis=-1)
|
||||
|
||||
# Split hidden states into components
|
||||
x_conv, BC = mx.split(hidden_states, [self.intermediate_size], axis=-1)
|
||||
B, C = mx.split(BC, [self.n_groups * self.ssm_state_size], axis=-1)
|
||||
|
||||
# Process based on sequence length
|
||||
if seq_len > 1 and cache is None:
|
||||
y, next_state = self.process_long_sequence(
|
||||
x_conv, B, C, dt,
|
||||
mx.zeros((batch_size, self.num_heads, self.head_dim, self.ssm_state_size))
|
||||
)
|
||||
else:
|
||||
# Reshape for single token processing
|
||||
x_conv = x_conv.reshape(batch_size, -1, self.head_dim)
|
||||
B = B.reshape(batch_size, self.num_heads, -1)
|
||||
C = C.reshape(batch_size, self.num_heads, -1)
|
||||
y, conv_state, next_state = self.process_single_token(x_conv, B, C, dt, cache)
|
||||
|
||||
if cache is not None:
|
||||
cache.update(conv_state, next_state)
|
||||
|
||||
# Apply normalization and final projection
|
||||
y = self.norm(y) * gate
|
||||
return self.out_proj(y)
|
||||
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Mixer(args)
|
||||
self.residual_in_fp32 = args.residual_in_fp32
|
||||
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache: Optional[Mamba2Cache] = None) -> mx.array:
|
||||
def __call__(self, x: mx.array, cache):
|
||||
if self.residual_in_fp32:
|
||||
x = x.astype(mx.float32)
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
@ -306,26 +289,27 @@ class Mamba2Model(nn.Module):
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, layer_cache in zip(self.layers, cache):
|
||||
x = layer(x, layer_cache)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.backbone = Mamba2Model(args)
|
||||
self.model_type = args.model_type
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None) -> mx.array:
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
@ -336,26 +320,24 @@ class Model(nn.Module):
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [
|
||||
Mamba2Cache(
|
||||
batch_size=batch_size,
|
||||
conv_dim=self.args.intermediate_size + 2 * self.args.n_groups * self.args.state_size,
|
||||
kernel_size=self.args.conv_kernel,
|
||||
num_heads=self.args.num_heads,
|
||||
head_dim=self.args.head_dim,
|
||||
state_size=self.args.state_size
|
||||
)
|
||||
for _ in range(len(self.backbone.layers))
|
||||
]
|
||||
|
||||
return [Mamba2Cache(batch_size, self.args.conv_kernel) for _ in range(len(self.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
sanitized = {}
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
if "conv1d.weight" in k:
|
||||
# Ensure weights are in correct shape (channels, 1, kernel_size)
|
||||
if v.ndim == 2:
|
||||
v = mx.expand_dims(v, axis=1)
|
||||
elif v.ndim == 1:
|
||||
v = mx.expand_dims(mx.expand_dims(v, axis=0), axis=0)
|
||||
sanitized[k] = v
|
||||
else:
|
||||
sanitized[k] = v
|
||||
return sanitized
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
||||
|
316
llms/mlx_lm/models/mamba22.py
Normal file
316
llms/mlx_lm/models/mamba22.py
Normal file
@ -0,0 +1,316 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
use_cache: bool = True
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
def silu(x):
|
||||
return x * mx.sigmoid(x)
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
# Fuse operations where possible
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
# Compute variance in fp32 for better numerical stability
|
||||
hidden_states_fp32 = hidden_states.astype(mx.float32)
|
||||
variance = mx.mean(hidden_states_fp32 * hidden_states_fp32, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
def ssd_optimized(x, A, B, C, chunk_size):
|
||||
batch, seqlen, nheads, dim = x.shape
|
||||
B = mx.expand_dims(B, axis=2)
|
||||
C = mx.expand_dims(C, axis=2)
|
||||
|
||||
output = mx.zeros((batch, seqlen, nheads, dim))
|
||||
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
||||
|
||||
for i in range(0, seqlen, chunk_size):
|
||||
chunk = slice(i, min(i + chunk_size, seqlen))
|
||||
chunk_size_actual = min(chunk_size, seqlen - i)
|
||||
|
||||
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
||||
x_chunk = mx.transpose(x[:, chunk], [0, 2, 3, 1])
|
||||
dBx = mx.matmul(x_chunk, B[:, chunk])
|
||||
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
||||
y = mx.matmul(state, mx.transpose(C[:, chunk], [0, 2, 1]))
|
||||
output[:, i:i+chunk_size_actual] = mx.transpose(y, [0, 3, 1, 2])
|
||||
|
||||
return output, state
|
||||
|
||||
|
||||
def update_conv_cache(x: mx.array, cache, kernel_size: int) -> Tuple[mx.array, mx.array]:
|
||||
"""Update convolution cache for sequential processing."""
|
||||
B, L, C = x.shape
|
||||
|
||||
if cache is None:
|
||||
# Initialize cache with zeros
|
||||
cache = mx.zeros((B, kernel_size - 1, C))
|
||||
|
||||
# Concatenate cache with current input
|
||||
x_with_cache = mx.concatenate([cache, x], axis=1)
|
||||
|
||||
# Update cache with the last (kernel_size - 1) elements
|
||||
new_cache = x_with_cache[:, -kernel_size+1:] if x_with_cache.shape[1] >= kernel_size else x_with_cache
|
||||
|
||||
return x_with_cache, new_cache
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.intermediate_size = int(args.expand * args.hidden_size)
|
||||
self.state_size = args.state_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.ssm_state_size = args.state_size
|
||||
self.n_groups = args.n_groups
|
||||
self.conv_kernel = args.conv_kernel
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
|
||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||||
|
||||
self.in_proj = nn.Linear(args.hidden_size, projection_size, bias=args.use_bias)
|
||||
|
||||
# Using built-in Conv1d instead of custom DepthwiseConv1d
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim, # For depthwise convolution
|
||||
padding=0, # We'll handle padding manually with the cache
|
||||
bias=args.use_conv_bias
|
||||
)
|
||||
|
||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
||||
|
||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||
|
||||
if args.rescale_prenorm_residual:
|
||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||
|
||||
def __call__(self, u: mx.array, cache):
|
||||
batch_size, seq_len, _ = u.shape
|
||||
|
||||
projected = self.in_proj(u)
|
||||
d_conv = self.conv_dim
|
||||
|
||||
z = projected[..., :self.intermediate_size]
|
||||
xBC = projected[..., self.intermediate_size:self.intermediate_size + d_conv]
|
||||
dt = projected[..., -self.num_heads:]
|
||||
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.args.time_step_min,
|
||||
self.args.time_step_max
|
||||
)
|
||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||
|
||||
# Handle convolution with separate cache update
|
||||
if cache is not None:
|
||||
# Update cache and get padded input
|
||||
xBC_padded, new_cache = update_conv_cache(xBC, cache.conv_states, self.conv_kernel)
|
||||
cache.conv_states = new_cache
|
||||
|
||||
# Prepare input for conv1d: [B, L, C] -> [B, C, L]
|
||||
xBC_conv = mx.transpose(xBC_padded, [0, 2, 1])
|
||||
|
||||
# Apply convolution
|
||||
xBC = self.conv1d(xBC_conv)
|
||||
|
||||
# Transform back: [B, C, L] -> [B, L, C]
|
||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
||||
|
||||
# Take only the relevant part corresponding to input length
|
||||
xBC = xBC[:, :seq_len]
|
||||
else:
|
||||
# For training, use regular convolution with padding
|
||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
||||
xBC = self.conv1d(xBC)
|
||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
||||
|
||||
xBC = silu(xBC)
|
||||
|
||||
x = xBC[..., :self.intermediate_size]
|
||||
BC = xBC[..., self.intermediate_size:]
|
||||
B = BC[..., :self.state_size]
|
||||
C = BC[..., self.state_size:]
|
||||
|
||||
x = mx.reshape(x, (-1, seq_len, self.num_heads, self.intermediate_size // self.num_heads))
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
D_expanded = mx.expand_dims(self.D, -1)
|
||||
|
||||
if cache is not None and cache.ssm_state is None:
|
||||
cache.ssm_state = mx.zeros((
|
||||
batch_size,
|
||||
self.num_heads,
|
||||
self.intermediate_size // self.num_heads,
|
||||
self.state_size
|
||||
))
|
||||
|
||||
if cache is not None:
|
||||
output = mx.zeros((batch_size, seq_len, self.args.hidden_size))
|
||||
|
||||
for pos in range(seq_len):
|
||||
x_t = x[:, pos:pos+1]
|
||||
|
||||
dA = mx.exp(dt[:, pos:pos+1] * mx.expand_dims(A, 0))
|
||||
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||
|
||||
x_expanded = mx.expand_dims(x_t, axis=3)
|
||||
dBx = mx.matmul(x_expanded, mx.expand_dims(B[:, pos:pos+1], axis=2))
|
||||
|
||||
cache.ssm_state = cache.ssm_state * dA + dBx
|
||||
|
||||
y = mx.matmul(cache.ssm_state, mx.expand_dims(C[:, pos:pos+1], axis=3))
|
||||
y = mx.squeeze(y, axis=-1)
|
||||
y = y + x_t * D_expanded
|
||||
|
||||
y = mx.reshape(y, (batch_size, 1, -1))
|
||||
y = self.norm(y + z[:, pos:pos+1])
|
||||
y = self.out_proj(y)
|
||||
|
||||
if self.args.residual_in_fp32:
|
||||
y = y.astype(mx.float32)
|
||||
|
||||
output = output.at[:, pos:pos+1].set(y)
|
||||
else:
|
||||
y, ssm_state = ssd_optimized(
|
||||
x * mx.expand_dims(dt, -1),
|
||||
-mx.exp(self.A_log) * dt,
|
||||
B, C,
|
||||
self.args.chunk_size
|
||||
)
|
||||
|
||||
y = mx.reshape(
|
||||
y + x * mx.expand_dims(self.D, -1),
|
||||
(batch_size, seq_len, -1)
|
||||
)
|
||||
|
||||
y = self.norm(y + z)
|
||||
output = self.out_proj(y)
|
||||
|
||||
if self.args.residual_in_fp32:
|
||||
output = output.astype(mx.float32)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Block(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache() for _ in range(len(self.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
357
llms/mlx_lm/models/mamba23.py
Normal file
357
llms/mlx_lm/models/mamba23.py
Normal file
@ -0,0 +1,357 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
use_cache: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
intermediate_size: int = None
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
||||
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones(hidden_size)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(mx.float32)
|
||||
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate.to(mx.float32))
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * math.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
# Model dimensions
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.ssm_state_size = args.state_size
|
||||
self.n_groups = args.n_groups
|
||||
self.intermediate_size = int(args.expand * args.hidden_size)
|
||||
|
||||
# Convolution parameters
|
||||
self.conv_kernel = args.conv_kernel
|
||||
self.use_conv_bias = args.use_conv_bias
|
||||
|
||||
# Time step parameters
|
||||
self.time_step_rank = int(args.time_step_rank)
|
||||
self.time_step_min = args.time_step_min
|
||||
self.time_step_max = args.time_step_max
|
||||
|
||||
# Processing parameters
|
||||
self.chunk_size = args.chunk_size
|
||||
self.layer_norm_epsilon = args.layer_norm_epsilon
|
||||
|
||||
# Calculate dimensions
|
||||
self.conv_dim = (self.intermediate_size +
|
||||
2 * self.n_groups * self.ssm_state_size)
|
||||
projection_size = (self.intermediate_size +
|
||||
self.conv_dim +
|
||||
self.num_heads)
|
||||
|
||||
# Initialize layers
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
kernel_size=self.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=self.conv_kernel - 1,
|
||||
bias=self.use_conv_bias
|
||||
)
|
||||
|
||||
# Initialize parameters
|
||||
self.dt_bias = mx.ones(self.num_heads)
|
||||
A = mx.arange(1, self.num_heads + 1)
|
||||
self.A_log = mx.log(A)
|
||||
self.D = mx.ones(self.num_heads)
|
||||
|
||||
# Output layers
|
||||
self.norm = MambaRMSNormGated(
|
||||
self.intermediate_size,
|
||||
eps=self.layer_norm_epsilon
|
||||
)
|
||||
self.out_proj = nn.Linear(
|
||||
self.intermediate_size,
|
||||
self.hidden_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
def reshape_into_chunks(self, tensor, pad_size, chunk_size):
|
||||
if pad_size > 0:
|
||||
pad_shape = list(tensor.shape)
|
||||
pad_shape[1] = pad_size
|
||||
padding = mx.zeros(pad_shape, dtype=tensor.dtype)
|
||||
tensor = mx.concatenate([tensor, padding], axis=1)
|
||||
|
||||
chunk_shape = list(tensor.shape)
|
||||
chunk_shape[1] = -1
|
||||
chunk_shape.insert(2, chunk_size)
|
||||
return tensor.reshape(chunk_shape)
|
||||
|
||||
def segment_sum(self, x):
|
||||
return mx.cumsum(x, axis=-1)
|
||||
|
||||
def process_single_token(self, hidden_states, B, C, dt, cache):
|
||||
batch_size = hidden_states.shape[0]
|
||||
|
||||
# Process convolution state
|
||||
if cache is not None and cache.conv_states is not None:
|
||||
conv_state = cache.conv_states
|
||||
# Roll the conv state and update the last position
|
||||
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
||||
# Create new conv state with updated last position
|
||||
new_conv_state = mx.array(conv_state)
|
||||
new_conv_state = new_conv_state.at[:, :, -1].add(hidden_states)
|
||||
conv_state = new_conv_state
|
||||
|
||||
# Compute convolution
|
||||
conv_out = mx.sum(conv_state * self.conv1d.weight[:, 0, :], axis=-1)
|
||||
if self.use_conv_bias:
|
||||
conv_out = conv_out + self.conv1d.bias
|
||||
|
||||
# Apply SiLU activation
|
||||
conv_out = mx.sigmoid(conv_out) * conv_out
|
||||
|
||||
else:
|
||||
# Initialize new cache and process convolution
|
||||
conv_state = mx.zeros((batch_size, self.conv_dim, self.conv_kernel - 1))
|
||||
|
||||
# Reshape hidden_states for conv1d
|
||||
hidden_states_reshaped = hidden_states.reshape(batch_size, -1, 1)
|
||||
conv_out = self.conv1d(hidden_states_reshaped)
|
||||
conv_out = mx.squeeze(conv_out, axis=-1) # Remove the last dimension
|
||||
conv_out = mx.sigmoid(conv_out) * conv_out
|
||||
|
||||
# Process SSM
|
||||
dt = mx.clip(
|
||||
nn.softplus(dt + self.dt_bias),
|
||||
self.time_step_min,
|
||||
self.time_step_max
|
||||
)
|
||||
|
||||
A = -mx.exp(self.A_log)
|
||||
dA = mx.exp(dt[:, None] * A[None, :])
|
||||
|
||||
if cache is not None and cache.ssm_states is not None:
|
||||
ssm_state = cache.ssm_states
|
||||
else:
|
||||
ssm_state = mx.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size)
|
||||
)
|
||||
|
||||
# Compute SSM updates
|
||||
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, hidden_states)
|
||||
next_state = ssm_state * dA[:, :, None, None] + dBx
|
||||
y = mx.einsum('bhds,bhs->bhd', next_state, C)
|
||||
|
||||
# Add skip connection
|
||||
y = y + hidden_states * self.D[None, :, None]
|
||||
|
||||
return y, conv_state, next_state
|
||||
|
||||
def process_long_sequence(self, hidden_states, B, C, dt, ssm_state):
|
||||
batch_size, seq_len = hidden_states.shape[:2]
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
# Reshape into chunks
|
||||
x_chunks = self.reshape_into_chunks(hidden_states, pad_size, self.chunk_size)
|
||||
B_chunks = self.reshape_into_chunks(B, pad_size, self.chunk_size)
|
||||
C_chunks = self.reshape_into_chunks(C, pad_size, self.chunk_size)
|
||||
|
||||
# Process time steps
|
||||
dt = nn.softplus(dt + self.dt_bias)
|
||||
dt = mx.clip(dt, self.time_step_min)
|
||||
|
||||
# Prepare matrices
|
||||
A = -mx.exp(self.A_log)
|
||||
A = A * dt[:, None]
|
||||
|
||||
# Process chunks
|
||||
A_chunks = self.reshape_into_chunks(
|
||||
mx.broadcast_to(A, (batch_size, seq_len + pad_size, self.num_heads)),
|
||||
pad_size,
|
||||
self.chunk_size
|
||||
)
|
||||
|
||||
# Compute cumulative sums
|
||||
A_cumsum = mx.cumsum(A_chunks, axis=-1)
|
||||
L = mx.exp(self.segment_sum(A_chunks))
|
||||
|
||||
# Process diagonal blocks
|
||||
G = mx.einsum('...lhn,...shn->...lsh', C_chunks, B_chunks)
|
||||
M = G * L[..., None, :]
|
||||
Y_diag = mx.einsum('...lsh,...sh->...lh', M, x_chunks)
|
||||
|
||||
# Process off-diagonal blocks
|
||||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||||
B_decay = B_chunks * decay_states[..., None]
|
||||
states = mx.einsum('...shn,...sh->...hn', B_decay, x_chunks)
|
||||
|
||||
# Combine results
|
||||
y = Y_diag + states
|
||||
|
||||
# Remove padding if necessary
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len]
|
||||
|
||||
return y, ssm_state
|
||||
|
||||
def __call__(self, x: mx.array, cache: Optional[Mamba2Cache] = None) -> mx.array:
|
||||
batch_size, seq_len, _ = x.shape
|
||||
|
||||
# Project input
|
||||
projected_states = self.in_proj(x)
|
||||
|
||||
# Calculate d_mlp based on projection size
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 *
|
||||
self.n_groups * self.ssm_state_size - self.num_heads) // 2
|
||||
|
||||
# Split projections with corrected dimensions
|
||||
splits = [
|
||||
d_mlp, # z0
|
||||
d_mlp, # x0
|
||||
self.intermediate_size, # gate
|
||||
self.conv_dim, # hidden_states
|
||||
self.num_heads # dt
|
||||
]
|
||||
|
||||
z0, x0, x1, gate, hidden_states, dt = projected_states.split(splits, axis=-1)
|
||||
|
||||
# Split hidden states into components
|
||||
x_conv, BC = mx.split(hidden_states, [self.intermediate_size], axis=-1)
|
||||
B, C = mx.split(BC, [self.n_groups * self.ssm_state_size], axis=-1)
|
||||
|
||||
# Process based on sequence length
|
||||
if seq_len > 1 and cache is None:
|
||||
y, next_state = self.process_long_sequence(
|
||||
x_conv, B, C, dt,
|
||||
mx.zeros((batch_size, self.num_heads, self.head_dim, self.ssm_state_size))
|
||||
)
|
||||
else:
|
||||
# Reshape for single token processing
|
||||
x_conv = x_conv.reshape(batch_size, -1, self.head_dim)
|
||||
B = B.reshape(batch_size, self.num_heads, -1)
|
||||
C = C.reshape(batch_size, self.num_heads, -1)
|
||||
y, conv_state, next_state = self.process_single_token(x_conv, B, C, dt, cache)
|
||||
|
||||
if cache is not None:
|
||||
cache.update(conv_state, next_state)
|
||||
|
||||
# Apply normalization and final projection
|
||||
y = self.norm(y) * gate
|
||||
return self.out_proj(y)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = Mamba2Mixer(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache: Optional[Mamba2Cache] = None) -> mx.array:
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||
x = self.embeddings(x)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, layer_cache in zip(self.layers, cache):
|
||||
x = layer(x, layer_cache)
|
||||
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.backbone = Mamba2Model(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None) -> mx.array:
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache() for _ in range(len(self.backbone.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
430
llms/mlx_lm/models/mamba24.py
Normal file
430
llms/mlx_lm/models/mamba24.py
Normal file
@ -0,0 +1,430 @@
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Tuple, Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import Mamba2Cache
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
num_heads: int
|
||||
head_dim: int
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_epsilon: float
|
||||
expand: int
|
||||
conv_kernel: int
|
||||
n_groups: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
initializer_range: float
|
||||
residual_in_fp32: bool
|
||||
time_step_min: float
|
||||
time_step_max: float
|
||||
time_step_floor: float
|
||||
rescale_prenorm_residual: bool
|
||||
rms_norm: bool
|
||||
chunk_size: int
|
||||
tie_word_embeddings: bool
|
||||
use_cache: bool = True
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
model_type: str = "mamba2"
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
def pad_tensor_by_size(input_tensor: mx.array, pad_size: int):
|
||||
"""
|
||||
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
||||
|
||||
Assumes that we only have tensors of either size 4 or 3
|
||||
"""
|
||||
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
|
||||
|
||||
return mx.pad(input_tensor, pad_shape, mode="constant", value=0)
|
||||
|
||||
|
||||
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
|
||||
"""
|
||||
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
|
||||
simultaneously splitting it into chunk sequences.
|
||||
|
||||
Assumes that we only have tensors of either size 4 or 3
|
||||
"""
|
||||
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
|
||||
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
|
||||
|
||||
if len(input_tensor.shape) == 3:
|
||||
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
|
||||
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
|
||||
else:
|
||||
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
|
||||
return input_tensor.reshape(
|
||||
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
|
||||
)
|
||||
|
||||
|
||||
def segment_sum(input_tensor):
|
||||
"""
|
||||
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
|
||||
"""
|
||||
chunk_size = input_tensor.size(-1)
|
||||
# 1. expand input tensor to have an additional dimension and repeat along that dimension
|
||||
# [..., chunk_size] -> [..., chunk_size, chunk_size]
|
||||
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
|
||||
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
|
||||
mask = mx.tril(mx.ones(chunk_size, chunk_size, device=input_tensor.device), diagonal=-1)
|
||||
input_tensor = input_tensor.masked_fill(~mask, 0)
|
||||
# 3. compute actual cumsum
|
||||
tensor_segsum = mx.cumsum(input_tensor, dim=-2)
|
||||
|
||||
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
|
||||
mask = mx.tril(mx.ones(chunk_size, chunk_size, device=input_tensor.device), diagonal=0)
|
||||
tensor_segsum = tensor_segsum.masked_fill(~mask, -mx.inf)
|
||||
return tensor_segsum
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs, layer_idx: int):
|
||||
super().__init__()
|
||||
self.layer_idx = layer_idx
|
||||
self.args = args
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.state_size = args.state_size
|
||||
self.n_groups = args.n_groups
|
||||
self.conv_kernel = args.conv_kernel
|
||||
self.intermediate_size = int(args.expand * args.hidden_size)
|
||||
self.time_step_rank = int(args.time_step_rank)
|
||||
self.time_step_min = args.time_step_min
|
||||
self.time_step_max = args.time_step_max
|
||||
self.chunk_size = args.chunk_size
|
||||
|
||||
|
||||
# Convolution dimension includes both intermediate sizes
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
bias=args.use_conv_bias,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=args.conv_kernel - 1
|
||||
)
|
||||
|
||||
# Compute input projection dimension
|
||||
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
||||
self.in_proj = nn.Linear(args.hidden_size, projection_size, bias=args.use_bias)
|
||||
|
||||
self.dt_bias = mx.ones(self.num_heads)
|
||||
A = mx.arange(1, self.num_heads + 1)
|
||||
self.A_log = mx.log(A)
|
||||
self.D = mx.ones(self.num_heads)
|
||||
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
|
||||
|
||||
def __call__(self, input_states: mx.array, cache):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
|
||||
# Gated MLP's linear projection
|
||||
projected_states = self.in_proj(input_states) # [1, 1, projection_size]
|
||||
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size -
|
||||
2 * self.n_groups * self.state_size - self.num_heads) // 2
|
||||
|
||||
# Split projected states
|
||||
*_, gate, hidden_states, dt = projected_states.split(
|
||||
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads],
|
||||
axis=-1
|
||||
)
|
||||
# hidden_states shape: [1, 1, conv_dim]
|
||||
|
||||
# Get SSM state from cache
|
||||
ssm_state = cache.ssm_states[self.layer_idx]
|
||||
|
||||
if cache.seqlen_offset > 0:
|
||||
# Handle cached generation case
|
||||
conv_state = cache.conv_states[self.layer_idx] # [batch, conv_dim, conv_kernel]
|
||||
conv_state = mx.roll(conv_state, shifts=-1, axis=-1)
|
||||
|
||||
# Handle batched generation - states are copied through
|
||||
# Properly reshape hidden_states for the conv_state update
|
||||
conv_state = conv_state.at[:, :, -1].set(hidden_states[:, 0, :])
|
||||
cache.conv_states[self.layer_idx] = conv_state
|
||||
|
||||
# Compute convolution output
|
||||
hidden_states = mx.sum(conv_state * self.conv1d.weight[:, 0, :], axis=-1)
|
||||
if self.args.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
hidden_states = nn.silu(hidden_states)[:, None, ...] # [batch, 1, conv_dim] : decoding
|
||||
|
||||
else:
|
||||
# Handle normal forward pass
|
||||
# Properly transpose while preserving the sequence dimension
|
||||
hidden_states = hidden_states.transpose(0, 2, 1) # [1, conv_dim, 1]
|
||||
|
||||
# Pad the convolution state
|
||||
padding_size = self.conv_kernel - 1
|
||||
conv_state = mx.pad(
|
||||
hidden_states,
|
||||
((0, 0), (0, 0), (padding_size, 0))
|
||||
)
|
||||
|
||||
# Store in cache
|
||||
cache.conv_states[self.layer_idx] = conv_state
|
||||
|
||||
# Apply convolution with proper padding
|
||||
hidden_states = self.conv1d(hidden_states) # [1, conv_dim, 1]
|
||||
hidden_states = hidden_states.transpose(0, 2, 1) # [1, 1, conv_dim]
|
||||
hidden_states = nn.silu(hidden_states)
|
||||
|
||||
# Split hidden states for SSM computation
|
||||
hidden_states, B, C = mx.split(
|
||||
hidden_states,
|
||||
[self.intermediate_size, self.n_groups * self.state_size, self.n_groups * self.state_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
# Compute A matrix
|
||||
A = -mx.exp(self.A_log)
|
||||
|
||||
if cache is not None and cache.seqlen_offset > 0:
|
||||
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||||
# for batched generation
|
||||
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
|
||||
dt = dt.transpose(0, 2, 1).expand(batch_size, dt.shape[-1], self.head_dim)
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
|
||||
|
||||
dt = nn.softplus(dt + dt_bias)
|
||||
dt = mx.clamp(dt, self.time_step_min) #, self.time_step_max)
|
||||
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.state_size)
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dA = mx.exp(dt[..., None] * A)
|
||||
|
||||
# Discretize B
|
||||
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
|
||||
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
|
||||
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
|
||||
B = B.reshape(batch_size, -1, B.shape[-1])
|
||||
# [bsz, num_heads, head_dim, state_size]
|
||||
dB = dt[..., None] * B[..., None, :]
|
||||
|
||||
# Discretize x into dB
|
||||
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
|
||||
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
|
||||
dBx = dB * hidden_states[..., None]
|
||||
|
||||
# State calculation
|
||||
cache.ssm_states[self.layer_idx].copy_(
|
||||
cache.ssm_states[self.layer_idx] * dA + dBx
|
||||
)
|
||||
# Subsequent output
|
||||
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
|
||||
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
|
||||
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
|
||||
C = C.reshape(batch_size, -1, C.shape[-1])
|
||||
# [bsz, num_heads, head_dim]
|
||||
|
||||
ssm_states = cache.ssm_states[self.layer_idx] # Shape: [b, h, d, n]
|
||||
# Reshape ssm_states to merge the first two dimensions
|
||||
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.state_size) # Shape: [b*h, d, n]
|
||||
C_reshaped = C.view(batch_size * self.num_heads, self.state_size, 1) # Shape: [b*h, n, 1]
|
||||
y = ssm_states_reshaped @ C_reshaped
|
||||
y = y.view(batch_size, self.num_heads, self.head_dim)
|
||||
|
||||
# D skip connection
|
||||
# [num_heads] -> [num_heads, head_dim]
|
||||
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
|
||||
y = (y + hidden_states * D)
|
||||
|
||||
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
|
||||
y = y.reshape(batch_size, -1)[:, None, ...]
|
||||
else:
|
||||
# begin ssd naive implementation without einsums
|
||||
dt = nn.functional.softplus(dt + self.dt_bias)
|
||||
dt = mx.clamp(dt, self.time_step_min)
|
||||
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim)
|
||||
B = B.reshape(batch_size, seq_len, -1, self.state_size)
|
||||
C = C.reshape(batch_size, seq_len, -1, self.state_size)
|
||||
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
|
||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
||||
|
||||
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
|
||||
|
||||
# Discretize x and A
|
||||
hidden_states = hidden_states * dt[..., None]
|
||||
A = A * dt
|
||||
|
||||
# Rearrange into blocks/chunks
|
||||
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
|
||||
|
||||
|
||||
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
|
||||
A = A.permute(0, 3, 1, 2)
|
||||
A_cumsum = mx.cumsum(A, dim=-1)
|
||||
|
||||
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
||||
# This is the analog of a causal mask
|
||||
L = mx.exp(segment_sum(A))
|
||||
|
||||
# First, contraction of C and B to get G (attention-weights like)
|
||||
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
|
||||
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
|
||||
|
||||
|
||||
# Step 2: Compute M, equivalent to applying attention mask to weights
|
||||
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
|
||||
M = M_intermediate.sum(dim=-1)
|
||||
|
||||
# Step 3: Compute Y_diag (apply to values)
|
||||
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
|
||||
|
||||
# (right term of low-rank factorization of off-diagonal blocks; B terms)
|
||||
|
||||
decay_states = mx.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
|
||||
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
|
||||
# permute back B * decay states
|
||||
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
|
||||
if cache is not None and cache.seqlen_offset > 0:
|
||||
previous_states = cache.ssm_states[self.layer_idx][:, None, ...]
|
||||
else:
|
||||
previous_states = mx.zeros_like(states[:, :1])
|
||||
states = mx.concat([previous_states, states], dim=1)
|
||||
decay_chunk = mx.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
|
||||
|
||||
states_permuted = states.permute(0, 2, 1, 3, 4)
|
||||
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
|
||||
new_states = result.permute(0, 2, 1, 3, 4)
|
||||
states, ssm_state = new_states[:, :-1], new_states[:, -1]
|
||||
|
||||
# Compute state -> output conversion per chunk
|
||||
# (left term of low-rank factorization of off-diagonal blocks; C terms)
|
||||
state_decay_out = mx.exp(A_cumsum)
|
||||
# compute Yoff
|
||||
C_times_states = (C[..., None, :] * states[:, :, None, ...])
|
||||
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
|
||||
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
|
||||
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
|
||||
|
||||
y = Y_diag + Y_off
|
||||
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
|
||||
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
|
||||
|
||||
y = y + D_residual
|
||||
# Cutting off padded chunks
|
||||
if pad_size > 0:
|
||||
y = y[:, :seq_len, :, :]
|
||||
y = y.reshape(batch_size, seq_len, -1)
|
||||
|
||||
if ssm_state is not None and cache is not None:
|
||||
cache.ssm_states[self.layer_idx] = ssm_state
|
||||
|
||||
scan_output = self.norm(y, gate)
|
||||
# end ssd naive
|
||||
|
||||
# 4. Final linear projection
|
||||
return self.out_proj(scan_output) # [batch, seq_len, hidden_size]
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs, layer_idx: int):
|
||||
super().__init__()
|
||||
self.residual_in_fp32 = args.residual_in_fp32
|
||||
self.mixer = Mamba2Block(args, layer_idx)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args, idx) for idx in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
|
||||
self.backbone = Mamba2(args)
|
||||
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def make_cache(self, batch_size=1):
|
||||
return [Mamba2Cache(
|
||||
batch_size,
|
||||
self.args.intermediate_size,
|
||||
self.args.conv_kernel,
|
||||
self.args.head_dim,
|
||||
self.args.num_heads,
|
||||
self.args.n_groups,
|
||||
self.args.state_size
|
||||
) for _ in range(len(self.layers))]
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
Loading…
Reference in New Issue
Block a user