mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
save push
This commit is contained in:
@@ -23,9 +23,42 @@ import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...utils import (
|
||||
ModelOutput,
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
)
|
||||
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available
|
||||
from .configuration_mamba2 import Mamba2Config
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
if is_mamba_2_ssm_available():
|
||||
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
||||
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
|
||||
else:
|
||||
selective_state_update = None
|
||||
|
||||
if is_causal_conv1d_available():
|
||||
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
||||
else:
|
||||
causal_conv1d_update, causal_conv1d_fn = None, None
|
||||
|
||||
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1"
|
||||
_CONFIG_FOR_DOC = "Mamba2Config"
|
||||
|
||||
|
||||
# Helper methods for segment sum computation
|
||||
|
||||
|
||||
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
|
||||
"""
|
||||
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
|
||||
@@ -80,7 +113,7 @@ def segment_sum(input_tensor):
|
||||
class Mamba2Cache:
|
||||
"""
|
||||
Arguments:
|
||||
config: ModelArgs
|
||||
config: Mamba2Config
|
||||
batch_size: int
|
||||
dtype: torch.dtype
|
||||
device: torch.device
|
||||
@@ -93,7 +126,7 @@ class Mamba2Cache:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, config: ModelArgs, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
|
||||
):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
@@ -116,6 +149,8 @@ class Mamba2Cache:
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
def update_conv_state(
|
||||
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
||||
@@ -142,18 +177,25 @@ class MambaRMSNormGated(torch.nn.Module):
|
||||
|
||||
def forward(self, hidden_states, gate=None):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.functional.silu(gate)
|
||||
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
|
||||
return self.weight * hidden_states
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
"""
|
||||
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
||||
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
||||
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
||||
and is why Mamba is called **selective** state spaces)
|
||||
"""
|
||||
|
||||
def __init__(self, config: Mamba2Config, layer_idx: int):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
@@ -161,8 +203,10 @@ class Mamba2Mixer(nn.Module):
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = int(config.expand * self.hidden_size)
|
||||
self.time_step_rank = int(config.time_step_rank)
|
||||
self.layer_idx = layer_idx
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
self.act = nn.silu
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
self.layer_norm_epsilon = config.layer_norm_epsilon
|
||||
self.rms_norm = config.rms_norm
|
||||
@@ -192,23 +236,178 @@ class Mamba2Mixer(nn.Module):
|
||||
projection_size,
|
||||
bias=config.use_bias,
|
||||
)
|
||||
# selective projection used to make dt, B and C input dependant
|
||||
|
||||
self.dt_bias = torch.ones(self.num_heads)
|
||||
# time step projection (discretization)
|
||||
# instantiate once and copy inv_dt in init_weights of PretrainedModel
|
||||
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
|
||||
|
||||
# S4D real initialization. These are not discretized!
|
||||
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
||||
A = torch.arange(1, self.num_heads + 1)
|
||||
self.A_log = torch.log(A)
|
||||
self.D = torch.ones(self.num_heads)
|
||||
|
||||
self.A_log = nn.Parameter(torch.log(A))
|
||||
self.A_log._no_weight_decay = True
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.D = nn.Parameter(torch.ones(self.num_heads))
|
||||
self.D._no_weight_decay = True
|
||||
|
||||
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None):
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.use_bias = config.use_bias
|
||||
|
||||
if not is_fast_path_available:
|
||||
logger.warning_once(
|
||||
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
|
||||
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
|
||||
" https://github.com/Dao-AILab/causal-conv1d"
|
||||
)
|
||||
|
||||
def cuda_kernels_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
# set up dimensions for reshapes later
|
||||
|
||||
batch_size, seq_len, _ = hidden_states.shape
|
||||
groups_time_state_size = self.n_groups * self.ssm_state_size
|
||||
d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads
|
||||
|
||||
# getting projected states from cache if it exists
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
|
||||
d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2
|
||||
split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads]
|
||||
_, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1)
|
||||
|
||||
hidden_states_B_C = causal_conv1d_update(
|
||||
hidden_states_B_C,
|
||||
cache_params.conv_states[self.layer_idx],
|
||||
self.conv1d.weight.squeeze(1),
|
||||
self.conv1d.bias,
|
||||
self.activation,
|
||||
)
|
||||
|
||||
hidden_states, B, C = torch.split(
|
||||
hidden_states_B_C,
|
||||
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
|
||||
dim=-1,
|
||||
)
|
||||
A = -torch.exp(self.A_log.float()) # (nheads,)
|
||||
|
||||
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
|
||||
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
|
||||
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
|
||||
D = self.D[:, None, ...].expand(-1, self.head_dim)
|
||||
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
|
||||
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
|
||||
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
|
||||
hidden_states = selective_state_update(
|
||||
cache_params.ssm_states[self.layer_idx],
|
||||
hidden_states_reshaped,
|
||||
dt,
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
D,
|
||||
z=None,
|
||||
dt_bias=dt_bias,
|
||||
dt_softplus=True,
|
||||
)
|
||||
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
|
||||
hidden_states = self.norm(hidden_states, gate)
|
||||
out = self.out_proj(hidden_states)[:, None, ...]
|
||||
# if no cache is found, calling the kernel
|
||||
else:
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
dtype = hidden_states.dtype
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
# 1. Gated MLP's linear projection
|
||||
projected_states = self.in_proj(hidden_states)
|
||||
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
|
||||
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
|
||||
|
||||
if self.training and cache_params is None:
|
||||
out, ssm_state = mamba_split_conv1d_scan_combined(
|
||||
projected_states,
|
||||
self.conv1d.weight.squeeze(1),
|
||||
self.conv1d.bias,
|
||||
self.dt_bias,
|
||||
A,
|
||||
D=self.D,
|
||||
chunk_size=self.chunk_size,
|
||||
seq_idx=None, # was seq_idx
|
||||
activation=self.activation,
|
||||
rmsnorm_weight=self.norm.weight,
|
||||
rmsnorm_eps=self.norm.variance_epsilon,
|
||||
outproj_weight=self.out_proj.weight,
|
||||
outproj_bias=self.out_proj.bias,
|
||||
headdim=self.head_dim,
|
||||
ngroups=self.n_groups,
|
||||
norm_before_gate=False,
|
||||
return_final_states=True,
|
||||
**dt_limit_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
gate, hidden_states_B_C, time_step = torch.split(
|
||||
projected_states,
|
||||
[self.intermediate_size, self.conv_dim, self.num_heads],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
time_step = nn.functional.softplus(time_step + self.dt_bias)
|
||||
# 1D Convolution
|
||||
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
|
||||
hidden_states_B_C = self.act(
|
||||
self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len]
|
||||
) # (B, L, self.d_inner + 2 * ngroups * d_state)
|
||||
else:
|
||||
hidden_states_B_C = causal_conv1d_fn(
|
||||
x=hidden_states_B_C.transpose(1, 2),
|
||||
weight=self.conv1d.weight.squeeze(1),
|
||||
bias=self.conv1d.bias,
|
||||
activation=self.activation,
|
||||
).transpose(1, 2)[:, :seq_len]
|
||||
hidden_states, B, C = torch.split(
|
||||
hidden_states_B_C,
|
||||
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
|
||||
dim=-1,
|
||||
)
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
dtype = hidden_states.dtype
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
scan_output, ssm_state = mamba_chunk_scan_combined(
|
||||
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
|
||||
time_step,
|
||||
A,
|
||||
B.view(batch_size, seq_len, self.n_groups, -1),
|
||||
C.view(batch_size, seq_len, self.n_groups, -1),
|
||||
chunk_size=self.chunk_size,
|
||||
D=self.D,
|
||||
z=None,
|
||||
seq_idx=None,
|
||||
return_final_states=True,
|
||||
**dt_limit_kwargs,
|
||||
)
|
||||
if ssm_state is not None and cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
scan_output = scan_output.view(batch_size, seq_len, -1)
|
||||
# Multiply "gate" branch and apply extra normalization layer
|
||||
scan_output = self.norm(scan_output, gate)
|
||||
out = self.out_proj(scan_output)
|
||||
return out
|
||||
|
||||
# fmt: off
|
||||
def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
dtype = input_states.dtype
|
||||
|
||||
# Gated MLP's linear projection
|
||||
projected_states = self.in_proj(input_states.squeeze(1))
|
||||
d_mlp = (
|
||||
projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||||
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
|
||||
_, _, gate, hidden_states, dt = projected_states.split(
|
||||
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
|
||||
)
|
||||
@@ -223,10 +422,10 @@ class Mamba2Mixer(nn.Module):
|
||||
# handle batched generation - states are copied through
|
||||
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
hidden_states = self.act(hidden_states)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
|
||||
else:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
conv_state = nn.functional.pad(
|
||||
@@ -235,16 +434,18 @@ class Mamba2Mixer(nn.Module):
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
dtype = hidden_states.dtype
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
else:
|
||||
ssm_state = torch.zeros(
|
||||
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
|
||||
device=hidden_states.device
|
||||
device=hidden_states.device, dtype=dtype
|
||||
)
|
||||
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
|
||||
|
||||
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
|
||||
A = -torch.exp(self.A_log.float()) # [num_heads]
|
||||
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
# Note: there is no need to pad parameter matrices here, as there is just one new token
|
||||
# for batched generation
|
||||
@@ -384,8 +585,25 @@ class Mamba2Mixer(nn.Module):
|
||||
# end ssd naive
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_output) # [batch, seq_len, hidden_size]
|
||||
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
|
||||
return contextualized_states
|
||||
# fmt: on
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
|
||||
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
|
||||
dtype = hidden_states.dtype
|
||||
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
|
||||
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
|
||||
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
|
||||
|
||||
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
|
||||
|
||||
|
||||
class Mamba2RMSNorm(nn.Module):
|
||||
@@ -399,47 +617,258 @@ class Mamba2RMSNorm(nn.Module):
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
return self.weight * hidden_states.to(input_dtype)
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, config):
|
||||
def __init__(self, config, layer_idx):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.residual_in_fp32 = config.residual_in_fp32
|
||||
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = Mamba2Mixer(config)
|
||||
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
x = self.mixer(
|
||||
self.norm(hidden_states), cache_params=cache_params, cache_position=cache_position
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
||||
if self.residual_in_fp32:
|
||||
residual = residual.to(torch.float32)
|
||||
|
||||
hidden_states = self.mixer(
|
||||
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
||||
)
|
||||
return x + hidden_states
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Mamba2Model(nn.Module):
|
||||
class Mamba2PreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = Mamba2Config
|
||||
base_model_prefix = "backbone"
|
||||
_no_split_modules = ["Mamba2Block"]
|
||||
supports_gradient_checkpointing = True
|
||||
_is_stateful = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, Mamba2Mixer):
|
||||
module.A_log._no_weight_decay = True
|
||||
module.D._no_weight_decay = True
|
||||
|
||||
dt = torch.exp(
|
||||
torch.rand(self.config.num_heads)
|
||||
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
||||
+ math.log(self.config.time_step_min)
|
||||
).clamp(min=self.config.time_step_floor)
|
||||
|
||||
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
module.dt_bias.copy_(inv_dt)
|
||||
module.dt_bias._no_reinit = True
|
||||
|
||||
if isinstance(module, nn.Linear):
|
||||
if module.bias is not None:
|
||||
if not getattr(module.bias, "_no_reinit", False):
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
||||
|
||||
if self.config.rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["out_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(self.config.num_hidden_layers)
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
|
||||
class Mamba2Output(ModelOutput):
|
||||
"""
|
||||
Class for the MAMBA2 model outputs.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
cache_params (`Mamba2Cache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
last_hidden_state: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[Mamba2Cache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
|
||||
class Mamba2CausalLMOutput(ModelOutput):
|
||||
"""
|
||||
Base class for causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
cache_params (`Mamba2Cache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[Mamba2Cache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
MAMBA2_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
MAMBA2_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
|
||||
`input_ids`.
|
||||
|
||||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||||
model's internal embedding lookup matrix.
|
||||
cache_params (`Mamba2Cache`, *optional*):
|
||||
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
||||
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
MAMBA2_START_DOCSTRING,
|
||||
)
|
||||
class Mamba2Model(Mamba2PreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
# Initialize weights and apply final processing
|
||||
self._register_load_state_dict_pre_hook(self.load_hook)
|
||||
self.post_init()
|
||||
|
||||
def load_hook(self, state_dict, prefix, *args):
|
||||
for k in state_dict:
|
||||
if "embedding." in k:
|
||||
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
||||
break
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.embeddings = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Mamba2Output,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[Tuple, Mamba2Output]:
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if self.gradient_checkpointing and self.training and use_cache:
|
||||
use_cache = False
|
||||
|
||||
if use_cache:
|
||||
if cache_params is None:
|
||||
@@ -447,44 +876,206 @@ class Mamba2Model(nn.Module):
|
||||
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||||
)
|
||||
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
||||
elif cache_position is None:
|
||||
# cases when we do manual forward instead of using `model.generate` which will initiate
|
||||
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
||||
# hack to conjecture the current cache position
|
||||
raise ValueError(
|
||||
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
||||
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
||||
"be initialized for you automatically"
|
||||
)
|
||||
else:
|
||||
cache_params = None
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for mixer_block in self.layers:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache_params=cache_params,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
||||
)
|
||||
else:
|
||||
hidden_states = mixer_block(
|
||||
hidden_states,
|
||||
cache_params=cache_params,
|
||||
cache_position=cache_position,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if use_cache:
|
||||
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||||
|
||||
return self.norm_f(hidden_states), cache_params if use_cache else None
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
||||
|
||||
return Mamba2Output(
|
||||
last_hidden_state=hidden_states,
|
||||
cache_params=cache_params if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
|
||||
embeddings).
|
||||
""",
|
||||
MAMBA2_START_DOCSTRING,
|
||||
)
|
||||
class Mamba2ForCausalLM(Mamba2PreTrainedModel):
|
||||
_tied_weights_keys = []
|
||||
|
||||
class Mamba2ForCausalLM(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = Mamba2Model(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.backbone.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
return self.backbone.set_input_embeddings(new_embeddings)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids,
|
||||
inputs_embeds=None,
|
||||
use_cache=None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
if inputs_embeds is not None:
|
||||
past_len = inputs_embeds.shape[1] + input_ids.shape[1]
|
||||
else:
|
||||
past_len = input_ids.shape[1]
|
||||
if use_cache:
|
||||
# `cache_position` should have been initialized in `generate`
|
||||
if cache_position is None:
|
||||
raise ValueError(
|
||||
"`cache_position` should not be None as it should have been initialized in "
|
||||
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
||||
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
||||
)
|
||||
# how do we detect that we are in decoding without cache?
|
||||
if cache_position[0] > 0:
|
||||
input_ids = input_ids[:, -1][..., None]
|
||||
attention_mask = attention_mask[:, -1][..., None]
|
||||
else:
|
||||
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
||||
# considering padding will be applied when input length is shorter, and truncation
|
||||
# will be applied when it is longer, so it will be equivalent to always have it match
|
||||
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
||||
cache_position = torch.arange(0, past_len, device=input_ids.device)
|
||||
# if the cache is not used, we also do have to extend the attention mask here
|
||||
# TODO there is likely a cleverer way to do this
|
||||
extended_mask = torch.ones(
|
||||
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||||
)
|
||||
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||||
cache_params = None
|
||||
|
||||
if attention_mask.shape[1] < past_len:
|
||||
# we have to update manually the attention mask if
|
||||
# we are in decoding without cache
|
||||
# and we don't have position_ids here
|
||||
# TODO but we should be able to use cache_position though at a later time
|
||||
extended_mask = torch.ones(
|
||||
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device
|
||||
)
|
||||
attention_mask = torch.cat([attention_mask, extended_mask], dim=1)
|
||||
if inputs_embeds is not None and cache_params is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"attention_mask": attention_mask,
|
||||
"cache_params": cache_params,
|
||||
"use_cache": use_cache,
|
||||
"cache_position": cache_position,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=Mamba2CausalLMOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
cache_params: Optional[Mamba2Cache] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
cache_position: Optional[torch.Tensor] = None,
|
||||
):
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs, # for now we need this for generation
|
||||
) -> Union[Tuple, Mamba2CausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
mamba2_outputs = self.backbone(
|
||||
input_ids,
|
||||
cache_params=cache_params,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
hidden_states = mamba2_outputs[0]
|
||||
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits, mamba2_outputs.cache_params, mamba2_outputs.hidden_states
|
||||
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + mamba2_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return Mamba2CausalLMOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
cache_params=mamba2_outputs.cache_params,
|
||||
hidden_states=mamba2_outputs.hidden_states,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user