mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
updates
This commit is contained in:
parent
80e10a59d7
commit
925e11439b
@ -76,7 +76,6 @@ def generate_grpo(
|
|||||||
# Process in batches
|
# Process in batches
|
||||||
for batch_start in range(0, total_samples, batch_size):
|
for batch_start in range(0, total_samples, batch_size):
|
||||||
batch_end = min(batch_start + batch_size, total_samples)
|
batch_end = min(batch_start + batch_size, total_samples)
|
||||||
batch_results = []
|
|
||||||
|
|
||||||
if is_training:
|
if is_training:
|
||||||
# Training mode with batched processing
|
# Training mode with batched processing
|
||||||
@ -92,26 +91,46 @@ def generate_grpo(
|
|||||||
|
|
||||||
# Track tokens for each sequence in the batch
|
# Track tokens for each sequence in the batch
|
||||||
batch_tokens = [[] for _ in range(batch_end - batch_start)]
|
batch_tokens = [[] for _ in range(batch_end - batch_start)]
|
||||||
active_indices = list(range(batch_end - batch_start))
|
|
||||||
|
# Initial token generation for all sequences in batch
|
||||||
|
for i in range(len(batch_logits)):
|
||||||
|
logits_temp = batch_logits[i] / temperature
|
||||||
|
next_token = mx.random.categorical(logits_temp)
|
||||||
|
token = next_token.item()
|
||||||
|
mx.eval(logits_temp, next_token, token)
|
||||||
|
batch_tokens[i].append(token)
|
||||||
|
|
||||||
|
# Check if this token already completes the sequence
|
||||||
|
if token == tokenizer.eos_token_id:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# Set up for next token
|
||||||
|
current_input = mx.array([token])
|
||||||
|
batch_logits[i] = model(current_input[None], cache=prompt_caches[i])[:, -1]
|
||||||
|
|
||||||
|
mx.eval(batch_logits)
|
||||||
|
active_indices = [i for i, tokens in enumerate(batch_tokens) if tokens[-1] != tokenizer.eos_token_id and len(tokens) < max_tokens]
|
||||||
|
|
||||||
# Generate tokens until all sequences are complete
|
# Generate tokens until all sequences are complete
|
||||||
while active_indices and max(len(tokens) for tokens in batch_tokens) < max_tokens:
|
while active_indices and max(len(tokens) for tokens in batch_tokens) < max_tokens:
|
||||||
next_active = []
|
next_active = []
|
||||||
for idx in active_indices:
|
for idx in active_indices:
|
||||||
logits_temp = batch_logits[idx] / temperature
|
logits_temp = batch_logits[idx] / temperature
|
||||||
probs = nn.softmax(logits_temp, axis=-1)
|
|
||||||
next_token = mx.random.categorical(logits_temp)
|
next_token = mx.random.categorical(logits_temp)
|
||||||
token = next_token.item()
|
token = next_token.item()
|
||||||
|
mx.eval(logits_temp, next_token, token)
|
||||||
test_sequence = batch_tokens[idx] + [token]
|
|
||||||
is_end = (len(test_sequence) >= len(end_sequence) and
|
|
||||||
mx.array_equal(
|
|
||||||
mx.array(test_sequence[-len(end_sequence):]),
|
|
||||||
end_sequence
|
|
||||||
))
|
|
||||||
|
|
||||||
batch_tokens[idx].append(token)
|
batch_tokens[idx].append(token)
|
||||||
|
|
||||||
|
# Check for end sequence
|
||||||
|
if len(batch_tokens[idx]) >= len(end_sequence):
|
||||||
|
test_sequence = batch_tokens[idx][-len(end_sequence):]
|
||||||
|
is_end = mx.array_equal(
|
||||||
|
mx.array(test_sequence),
|
||||||
|
end_sequence
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
is_end = False
|
||||||
|
|
||||||
if is_end or token == tokenizer.eos_token_id or len(batch_tokens[idx]) >= max_tokens:
|
if is_end or token == tokenizer.eos_token_id or len(batch_tokens[idx]) >= max_tokens:
|
||||||
# This sequence is done
|
# This sequence is done
|
||||||
pass
|
pass
|
||||||
@ -124,11 +143,30 @@ def generate_grpo(
|
|||||||
mx.eval([batch_logits[idx] for idx in next_active])
|
mx.eval([batch_logits[idx] for idx in next_active])
|
||||||
active_indices = next_active
|
active_indices = next_active
|
||||||
|
|
||||||
|
# Clear caches after processing this batch
|
||||||
|
for pc in prompt_caches:
|
||||||
|
del pc
|
||||||
|
|
||||||
# Add batch results to overall results
|
# Add batch results to overall results
|
||||||
for tokens in batch_tokens:
|
for tokens in batch_tokens:
|
||||||
if tokens:
|
if tokens:
|
||||||
results.append(mx.array(tokens))
|
# Filter out any special tokens that might appear after the end token
|
||||||
|
if len(tokens) >= len(end_sequence):
|
||||||
|
for i in range(len(tokens) - len(end_sequence) + 1):
|
||||||
|
if mx.array_equal(
|
||||||
|
mx.array(tokens[i:i+len(end_sequence)]),
|
||||||
|
end_sequence
|
||||||
|
):
|
||||||
|
tokens = tokens[:i+len(end_sequence)]
|
||||||
|
break
|
||||||
|
|
||||||
|
# Filter out EOS token if it's the last token
|
||||||
|
if tokens and tokens[-1] == tokenizer.eos_token_id:
|
||||||
|
tokens = tokens[:-1]
|
||||||
|
|
||||||
|
# Only add non-empty token lists
|
||||||
|
if tokens:
|
||||||
|
results.append(mx.array(tokens))
|
||||||
else:
|
else:
|
||||||
# Non-training mode with batched processing
|
# Non-training mode with batched processing
|
||||||
for idx in range(batch_start, batch_end):
|
for idx in range(batch_start, batch_end):
|
||||||
@ -158,7 +196,6 @@ def generate_grpo(
|
|||||||
results.append(mx.array(current_tokens))
|
results.append(mx.array(current_tokens))
|
||||||
|
|
||||||
mx.metal.clear_cache()
|
mx.metal.clear_cache()
|
||||||
|
|
||||||
mx.eval(results)
|
mx.eval(results)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
@ -267,14 +304,7 @@ def grpo_loss(
|
|||||||
|
|
||||||
# If we didn't generate any completions, return early
|
# If we didn't generate any completions, return early
|
||||||
if not all_completions:
|
if not all_completions:
|
||||||
print("No completions were generated. Returning zero loss.")
|
raise ValueError("No completions were generated. Please check your model and inputs.")
|
||||||
dummy_loss = mx.zeros(1)
|
|
||||||
dummy_metrics = {
|
|
||||||
'total_rewards_mean': mx.zeros(1),
|
|
||||||
'total_rewards_std': mx.zeros(1),
|
|
||||||
'kl': mx.zeros(1)
|
|
||||||
}
|
|
||||||
return dummy_loss, mx.array(0), dummy_metrics
|
|
||||||
|
|
||||||
# Create expanded prompts and answers based on actual generated completions
|
# Create expanded prompts and answers based on actual generated completions
|
||||||
expanded_answers = []
|
expanded_answers = []
|
||||||
@ -453,11 +483,24 @@ def grpo_loss(
|
|||||||
|
|
||||||
if is_validation and all_completion_texts:
|
if is_validation and all_completion_texts:
|
||||||
print("\n=== Validation Sample Details ===")
|
print("\n=== Validation Sample Details ===")
|
||||||
|
|
||||||
|
# Print the input context (prompt)
|
||||||
|
last_prompt_idx = batch_indices[-1] if batch_indices else 0
|
||||||
|
|
||||||
|
if last_prompt_idx < len(prompt_text):
|
||||||
|
print(f"\n📋 Raw Prompt:\n{prompt_text[last_prompt_idx]}")
|
||||||
|
print("\n" + "="*10 + "\n")
|
||||||
|
|
||||||
|
# Get the actual tokenized prompt that was fed to the model
|
||||||
|
if last_prompt_idx < len(prompt_tokens):
|
||||||
|
actual_prompt = tokenizer.decode(prompt_tokens[last_prompt_idx])
|
||||||
|
print(f"\n🔄 Model Input:\n{actual_prompt}")
|
||||||
|
print("\n" + "="*10 + "\n")
|
||||||
|
|
||||||
print(f"\n📝 Generation:\n{all_completion_texts[-1]}")
|
print(f"\n📝 Generation:\n{all_completion_texts[-1]}")
|
||||||
print("\n" + "="*10 + "\n")
|
print("\n" + "="*10 + "\n")
|
||||||
|
|
||||||
# Make sure we have a valid index for answer_text
|
# Make sure we have a valid index for answer_text
|
||||||
last_prompt_idx = batch_indices[-1] if batch_indices else 0
|
|
||||||
if last_prompt_idx < len(answer_text):
|
if last_prompt_idx < len(answer_text):
|
||||||
print(f"\n✅ Answer:\n{answer_text[last_prompt_idx]}")
|
print(f"\n✅ Answer:\n{answer_text[last_prompt_idx]}")
|
||||||
print("\n" + "="*10 + "\n")
|
print("\n" + "="*10 + "\n")
|
||||||
|
Loading…
Reference in New Issue
Block a user