mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-27 03:05:20 +08:00
commit
92efa32060
1
phi2/.gitignore
vendored
Normal file
1
phi2/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
weights.npz
|
57
phi2/README.md
Normal file
57
phi2/README.md
Normal file
@ -0,0 +1,57 @@
|
||||
# Phi-2
|
||||
|
||||
Phi-2 is a 2.7B parameter language model released by Microsoft with
|
||||
performance that rivals much larger models.[^1] It was trained on a mixture of
|
||||
GPT-4 outputs and clean web text.
|
||||
|
||||
Phi-2 efficiently runs on Apple silicon devices with 8GB of memory in 16-bit
|
||||
precision.
|
||||
|
||||
## Setup
|
||||
|
||||
Download and convert the model:
|
||||
|
||||
```sh
|
||||
python convert.py
|
||||
```
|
||||
|
||||
This will make the `weights.npz` file which MLX can read.
|
||||
|
||||
## Generate
|
||||
|
||||
To generate text with the default prompt:
|
||||
|
||||
```sh
|
||||
python phi2.py
|
||||
```
|
||||
|
||||
Should give the output:
|
||||
|
||||
```
|
||||
Answer: Mathematics is like a lighthouse that guides us through the darkness of
|
||||
uncertainty. Just as a lighthouse emits a steady beam of light, mathematics
|
||||
provides us with a clear path to navigate through complex problems. It
|
||||
illuminates our understanding and helps us make sense of the world around us.
|
||||
|
||||
Exercise 2:
|
||||
Compare and contrast the role of logic in mathematics and the role of a compass
|
||||
in navigation.
|
||||
|
||||
Answer: Logic in mathematics is like a compass in navigation. It helps
|
||||
```
|
||||
|
||||
To use your own prompt:
|
||||
|
||||
```sh
|
||||
python phi2.py --prompt <your prompt here> --max_tokens <max_tokens_to_generate>
|
||||
```
|
||||
|
||||
To see a list of options run:
|
||||
|
||||
```sh
|
||||
python phi2.py --help
|
||||
```
|
||||
|
||||
[^1]: For more details on the model see the [blog post](
|
||||
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
|
||||
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)
|
23
phi2/convert.py
Normal file
23
phi2/convert.py
Normal file
@ -0,0 +1,23 @@
|
||||
from transformers import AutoModelForCausalLM
|
||||
import numpy as np
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
if "wte.weight" in key:
|
||||
key = "wte.weight"
|
||||
|
||||
if ".mlp" in key:
|
||||
key = key.replace(".mlp", "")
|
||||
return key
|
||||
|
||||
|
||||
def convert():
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||
np.savez("weights.npz", **weights)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
convert()
|
215
phi2/phi2.py
Normal file
215
phi2/phi2.py
Normal file
@ -0,0 +1,215 @@
|
||||
import argparse
|
||||
from typing import Optional
|
||||
from dataclasses import dataclass
|
||||
from mlx.utils import tree_unflatten
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import math
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
max_sequence_length: int = 2048
|
||||
num_vocab: int = 51200
|
||||
model_dim: int = 2560
|
||||
num_heads: int = 32
|
||||
num_layers: int = 32
|
||||
rotary_dim: int = 32
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||
|
||||
|
||||
class RoPEAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
||||
self.Wqkv = nn.Linear(dims, 3 * dims)
|
||||
self.out_proj = nn.Linear(dims, dims)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
qkv = self.Wqkv(x)
|
||||
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
||||
|
||||
# Extract some shapes
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
# Add RoPE to the queries and keys and combine them with the cache
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
queries = queries.astype(mx.float32)
|
||||
keys = keys.astype(mx.float32)
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
|
||||
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class ParallelBlock(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
dims = config.model_dim
|
||||
mlp_dims = dims * 4
|
||||
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
||||
self.ln = LayerNorm(dims)
|
||||
self.fc1 = nn.Linear(dims, mlp_dims)
|
||||
self.fc2 = nn.Linear(mlp_dims, dims)
|
||||
self.act = nn.GELU(approx="precise")
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
h = self.ln(x)
|
||||
attn_h, cache = self.mixer(h, mask, cache)
|
||||
ff_h = self.fc2(self.act(self.fc1(h)))
|
||||
return attn_h + ff_h + x, cache
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
||||
|
||||
def __call__(self, x, mask, cache):
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
|
||||
for e, layer in enumerate(self.h):
|
||||
x, cache[e] = layer(x, mask, cache[e])
|
||||
return x, cache
|
||||
|
||||
|
||||
class OutputHead(nn.Module):
|
||||
def __init__(self, config: ModelArgs) -> None:
|
||||
self.ln = LayerNorm(config.model_dim)
|
||||
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
||||
|
||||
def __call__(self, inputs):
|
||||
return self.linear(self.ln(inputs))
|
||||
|
||||
|
||||
class Phi2(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
||||
self.transformer = TransformerDecoder(config)
|
||||
self.lm_head = OutputHead(config)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache: mx.array = None,
|
||||
) -> tuple[mx.array, mx.array]:
|
||||
x = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
if x.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(x.dtype)
|
||||
|
||||
y, cache = self.transformer(x, mask, cache)
|
||||
return self.lm_head(y), cache
|
||||
|
||||
|
||||
def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
logits, cache = model(prompt)
|
||||
y = sample(logits[:, -1, :])
|
||||
yield y
|
||||
|
||||
while True:
|
||||
logits, cache = model(y[:, None], cache=cache)
|
||||
y = sample(logits.squeeze(1))
|
||||
yield y
|
||||
|
||||
|
||||
def load_model():
|
||||
model = Phi2(ModelArgs())
|
||||
weights = mx.load("weights.npz")
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Phi-2 inference script")
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="The message to be processed by the model",
|
||||
default="Write a detailed analogy between mathematics and a lighthouse.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Maximum number of tokens to generate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp",
|
||||
help="The sampling temperature.",
|
||||
type=float,
|
||||
default=0.0,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
model, tokenizer = load_model()
|
||||
|
||||
prompt = tokenizer(
|
||||
args.prompt,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)["input_ids"]
|
||||
|
||||
prompt = mx.array(prompt)
|
||||
|
||||
print("[INFO] Generating with Phi-2...", flush=True)
|
||||
print(args.prompt, end="", flush=True)
|
||||
|
||||
tokens = []
|
||||
for token, _ in zip(generate(prompt, model), range(args.max_tokens)):
|
||||
tokens.append(token)
|
||||
|
||||
if (len(tokens) % 10) == 0:
|
||||
mx.eval(tokens)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s, end="", flush=True)
|
||||
tokens = []
|
||||
|
||||
mx.eval(tokens)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s, flush=True)
|
4
phi2/requirements.txt
Normal file
4
phi2/requirements.txt
Normal file
@ -0,0 +1,4 @@
|
||||
einops
|
||||
mlx
|
||||
numpy
|
||||
transformers
|
Loading…
Reference in New Issue
Block a user