This commit is contained in:
Goekdeniz-Guelmez 2025-02-26 16:51:18 +01:00
parent 61fad00892
commit 932b196b48

View File

@ -42,6 +42,29 @@ class ModelArgs(BaseModelArgs):
self.time_step_rank = math.ceil(self.hidden_size / 16)
class DepthWiseConv1d(nn.Module):
def __init__(self, channels, kernel_size, bias=True, padding=0):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = mx.random.normal((channels, kernel_size, 1))
self.bias = mx.zeros((channels,)) if bias else None
def __call__(self, x, cache=None):
B, L, C = x.shape
_, K, _ = self.weight.shape
if cache is not None:
x = mx.concatenate([cache, x], axis=1)
else:
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
y = mx.conv_general(x, self.weight, groups=C)
y = y + self.bias
return y, x[:, -K + 1:, :]
def ssd_forward_attn(
x: mx.array,
dt: mx.array,
@ -144,13 +167,11 @@ class Mamba2Block(nn.Module):
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
conv_channels = self.d_inner + 2 * self.n_groups * self.d_state
self.conv1d = nn.Conv1d(
in_channels=conv_channels,
out_channels=conv_channels,
self.conv1d = DepthWiseConv1d(
channels=self.d_inner + 2 * self.n_groups * self.d_state,
kernel_size=self.d_conv,
groups=conv_channels,
padding=self.d_conv - 1,
bias=args.use_conv_bias,
padding=self.d_conv-1
)
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
@ -172,36 +193,10 @@ class Mamba2Block(nn.Module):
axis=-1
)
# Handle convolution with caching
xBC = mx.swapaxes(xBC, 1, 2) # [B, L, C] -> [B, C, L]
if conv_state is not None and seq_len > 0:
# Concatenate cached state with current input
xBC_with_cache = mx.concatenate([conv_state, xBC], axis=2)
elif seq_len > 0:
# For the first call, pad with zeros
padding = mx.zeros((batch_size, xBC.shape[1], self.d_conv - 1))
xBC_with_cache = mx.concatenate([padding, xBC], axis=2)
else:
xBC_with_cache = conv_state if conv_state is not None else mx.zeros((batch_size, xBC.shape[1], 0))
# Save state for next iteration
if seq_len > 0:
next_conv_state = xBC_with_cache[:, :, -(self.d_conv - 1):]
else:
next_conv_state = conv_state
# Apply regular convolution using nn.Conv1d
if seq_len > 0:
# Use the standard Conv1d module for the actual computation
xBC_conv = self.conv1d(xBC_with_cache)
xBC = xBC_conv[:, :, -seq_len:] # Take only the relevant output positions
xBC = mx.swapaxes(xBC, 1, 2) # [B, C, L] -> [B, L, C]
xBC = xBC * mx.sigmoid(xBC)
else:
# Handle empty sequence case
xBC = mx.swapaxes(xBC, 1, 2) # [B, C, L] -> [B, L, C]
xBC, conv_state = self.conv1d(xBC, conv_state)
xBC = xBC * mx.sigmoid(xBC)
xBC = xBC[:, :seq_len, :]
x, B, C = mx.split(
xBC,
[self.d_inner, self.d_inner + self.d_state * self.n_groups],
@ -212,6 +207,7 @@ class Mamba2Block(nn.Module):
B = mx.reshape(B, (batch_size, seq_len, self.n_groups, -1))
C = mx.reshape(C, (batch_size, seq_len, self.n_groups, -1))
A = -mx.exp(self.A_log)
y, next_ssm_state = ssd_forward_attn(
x=x,
dt=dt,
@ -234,7 +230,7 @@ class Mamba2Block(nn.Module):
y = self.out_proj(y)
cache[0] = next_conv_state
cache[0] = conv_state
cache[1] = next_ssm_state
return y