mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
top_k and min_p refactor
This commit is contained in:
@@ -88,7 +88,6 @@ def make_logits_processors(
|
||||
def top_k_sampling(
|
||||
logprobs: mx.array,
|
||||
top_k: int,
|
||||
temperature=1.0,
|
||||
) -> mx.array:
|
||||
"""
|
||||
Sample from only the top K tokens ranked by probability.
|
||||
@@ -103,12 +102,11 @@ def top_k_sampling(
|
||||
f"`top_k` has to be an integer in the (0, {vocab_size}] interval,"
|
||||
f" but is {top_k}."
|
||||
)
|
||||
logprobs = logprobs * (1 / temperature)
|
||||
mask_idx = mx.argpartition(-logprobs, kth=top_k - 1, axis=-1)[..., top_k:]
|
||||
masked_logprobs = mx.put_along_axis(
|
||||
logprobs, mask_idx, mx.array(-float("inf"), logprobs.dtype), axis=-1
|
||||
)
|
||||
return mx.random.categorical(masked_logprobs, axis=-1)
|
||||
return masked_logprobs
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
@@ -116,7 +114,6 @@ def min_p_sampling(
|
||||
logprobs: mx.array,
|
||||
min_p: float,
|
||||
min_tokens_to_keep: int = 1,
|
||||
temperature=1.0,
|
||||
) -> mx.array:
|
||||
"""
|
||||
Apply min-p sampling to the logprobs.
|
||||
@@ -144,8 +141,6 @@ def min_p_sampling(
|
||||
)
|
||||
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
|
||||
|
||||
logprobs = logprobs * (1 / temperature)
|
||||
|
||||
# Indices sorted in decreasing order
|
||||
sorted_indices = mx.argsort(-logprobs, axis=-1)
|
||||
sorted_logprobs = mx.take_along_axis(logprobs, sorted_indices, axis=-1)
|
||||
@@ -163,9 +158,16 @@ def min_p_sampling(
|
||||
# Create pool of tokens with probability less than scaled min_p
|
||||
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
|
||||
|
||||
# Return sampled tokens
|
||||
sorted_tokens = mx.random.categorical(selected_logprobs, axis=-1)[:, None]
|
||||
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
|
||||
# Create a mapping to rearrange back to original indices
|
||||
# Use argsort of sorted_indices to get the inverse permutation
|
||||
inverse_indices = mx.argsort(sorted_indices, axis=-1)
|
||||
|
||||
# Rearrange selected_logprobs back to original order
|
||||
original_order_logprobs = mx.take_along_axis(
|
||||
selected_logprobs, inverse_indices, axis=-1
|
||||
)
|
||||
|
||||
return original_order_logprobs
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
|
||||
Reference in New Issue
Block a user