mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
top_k and min_p refactor
This commit is contained in:
@@ -9,28 +9,28 @@ class TestSampleUtils(unittest.TestCase):
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
|
||||
actual_logits = top_p_sampling(logits, 0.3)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
new_logits = top_p_sampling(logits, 0.3)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||
|
||||
actual_logits = top_p_sampling(logits, 0.95)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
new_logits = top_p_sampling(logits, 0.95)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist())
|
||||
|
||||
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
actual_logits = top_p_sampling(logits, 0.4)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
new_logits = top_p_sampling(logits, 0.4)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
||||
|
||||
actual_logits = top_p_sampling(logits, 0.6)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
new_logits = top_p_sampling(logits, 0.6)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(
|
||||
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
||||
)
|
||||
|
||||
actual_logits = top_p_sampling(logits, 0.95)
|
||||
actual_probs = mx.softmax(actual_logits.squeeze())
|
||||
new_logits = top_p_sampling(logits, 0.95)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
||||
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
||||
self.assertEqual(actual_rounded, expected_rounded)
|
||||
@@ -39,8 +39,8 @@ class TestSampleUtils(unittest.TestCase):
|
||||
# Batch mode works
|
||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
||||
logits = mx.log(probs)
|
||||
actual_logits = top_p_sampling(logits, 0.5)
|
||||
actual_probs = mx.softmax(actual_logits, axis=-1)
|
||||
new_logits = top_p_sampling(logits, 0.5)
|
||||
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||
self.assertEqual(
|
||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||
)
|
||||
@@ -48,43 +48,50 @@ class TestSampleUtils(unittest.TestCase):
|
||||
def test_min_p_sampling(self):
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
temperature = 1.0
|
||||
token = min_p_sampling(logits, 0.8)
|
||||
self.assertEqual(token, 0)
|
||||
new_logits = min_p_sampling(logits, 0.8)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
temperature = 1.0
|
||||
for _ in range(5):
|
||||
token = min_p_sampling(logits, 0.05)
|
||||
self.assertTrue(token in (0, 3))
|
||||
new_logits = min_p_sampling(logits, 0.05)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), mx.squeeze(probs).tolist())
|
||||
|
||||
# Batch mode works
|
||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||
logits = mx.log(probs)
|
||||
tokens = min_p_sampling(logits, 0.7)
|
||||
self.assertEqual(tokens.tolist(), [0, 1])
|
||||
new_logits = min_p_sampling(logits, 0.7)
|
||||
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||
self.assertEqual(
|
||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||
)
|
||||
|
||||
def test_top_k_sampling(self):
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
|
||||
token = top_k_sampling(logits, 1).item()
|
||||
self.assertEqual(token, 0)
|
||||
new_logits = top_k_sampling(logits, 1)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||
|
||||
probs = mx.array([0.5, 0.0, 0.0, 0.5])[None]
|
||||
tokens = set()
|
||||
for _ in range(100):
|
||||
token = top_k_sampling(logits, 2)
|
||||
tokens.add(token.item())
|
||||
self.assertEqual(tokens, {0, 3})
|
||||
probs = mx.array([0.6, 0.0, 0.1, 0.3])[None]
|
||||
logits = mx.log(probs)
|
||||
new_logits = top_k_sampling(logits, 2)
|
||||
actual_probs = mx.softmax(new_logits.squeeze())
|
||||
self.assertEqual(
|
||||
[round(p, 4) for p in actual_probs.tolist()], [0.6667, 0.0, 0.0, 0.3333]
|
||||
)
|
||||
|
||||
# Batch mode works
|
||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||
logits = mx.log(probs)
|
||||
|
||||
tokens = top_k_sampling(logits, 1)
|
||||
self.assertEqual(tokens.tolist(), [0, 1])
|
||||
new_logits = top_k_sampling(logits, 1)
|
||||
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||
self.assertEqual(
|
||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user