mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
CLIP (ViT) (#315)
* probably approximatelly correct CLIPTextEncoder * implemented CLIPEncoderLayer as built-in nn.TransformerEncoderLayer * replaced embedding layer with simple matrix * implemented ViT * added ViT tests * fixed tests * added pooler_output for text * implemented complete CLIPModel * implemented init * implemented convert.py and from_pretrained * fixed some minor bugs and added the README.md * removed tokenizer unused comments * removed unused deps * updated ACKNOWLEDGEMENTS.md * Feat: Image Processor for CLIP (#1) @nkasmanoff: * clip image processor * added example usage * refactored image preprocessing * deleted unused image_config.py * removed preprocessing port * added dependency to mlx-data * fixed attribution and moved photos to assets * implemented a simple port of CLIPImageProcessor * review changes * PR review changes * renamed too verbose arg * updated README.md * nits in readme / conversion * simplify some stuff, remove unneeded inits * remove more init stuff * more simplify * make test a unit test * update main readme * readme nits --------- Co-authored-by: Noah Kasmanoff <nkasmanoff@gmail.com> Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
ba3a9355d1
commit
94358219cf
@ -10,3 +10,4 @@ MLX Examples was developed with contributions from the following individuals:
|
||||
- Juarez Bochi: Added support for T5 models.
|
||||
- Sarthak Yadav: Added the `cifar` and `speechcommands` examples.
|
||||
- Shunta Saito: Added support for PLaMo models.
|
||||
- Gabrijel Boduljak: Implemented `CLIP`.
|
||||
|
@ -26,9 +26,15 @@ Some more useful examples are listed below.
|
||||
|
||||
- Speech recognition with [OpenAI's Whisper](whisper).
|
||||
|
||||
### Multimodal models
|
||||
|
||||
- Joint text and image embeddings with [CLIP](clip).
|
||||
|
||||
### Other Models
|
||||
|
||||
- Semi-supervised learning on graph-structured data with [GCN](gcn).
|
||||
- Real NVP [normalizing flow](normalizing_flow) for density estimation and
|
||||
sampling.
|
||||
|
||||
### Hugging Face
|
||||
|
||||
|
1
clip/.gitignore
vendored
Normal file
1
clip/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
mlx_model/
|
76
clip/README.md
Normal file
76
clip/README.md
Normal file
@ -0,0 +1,76 @@
|
||||
# CLIP
|
||||
|
||||
An example of OpenAI's CLIP in MLX. The CLIP (contrastive language-image
|
||||
pre-training) model embeds images and text in the same space.[^1]
|
||||
|
||||
### Setup
|
||||
|
||||
Install the dependencies:
|
||||
|
||||
```shell
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Next, download a CLIP model from Hugging Face and convert it to MLX. The
|
||||
default model is
|
||||
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32).
|
||||
|
||||
```
|
||||
python convert.py
|
||||
```
|
||||
|
||||
The script will by default download the model and configuration files to the
|
||||
directory ``mlx_model/``.
|
||||
|
||||
### Run
|
||||
|
||||
You can use the CLIP model to embed images and text.
|
||||
|
||||
```python
|
||||
from PIL import Image
|
||||
import clip
|
||||
|
||||
model, tokenizer, img_processor = clip.load("mlx_model")
|
||||
inputs = {
|
||||
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
|
||||
"pixel_values": img_processor(
|
||||
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
|
||||
),
|
||||
}
|
||||
output = model(**inputs)
|
||||
|
||||
# Get text and image embeddings:
|
||||
text_embeds = output.text_embeds
|
||||
image_embeds = output.image_embeds
|
||||
```
|
||||
|
||||
Run the above example with `python clip.py`.
|
||||
|
||||
To embed only images or only the text, pass only the ``input_ids`` or
|
||||
``pixel_values``, respectively.
|
||||
|
||||
This example re-implements minimal image preprocessing and tokenization to reduce
|
||||
dependencies. For additional preprocessing functionality, you can use
|
||||
``transformers``. The file `hf_preproc.py` has an example.
|
||||
|
||||
MLX CLIP has been tested and works with the following Hugging Face repos:
|
||||
|
||||
- [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)
|
||||
- [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)
|
||||
|
||||
You can run the tests with:
|
||||
|
||||
```shell
|
||||
python test.py
|
||||
```
|
||||
|
||||
To test new models, update the `MLX_PATH` and `HF_PATH` in `test.py`.
|
||||
|
||||
### Attribution
|
||||
|
||||
- `assets/cat.jpeg` is a "Cat" by London's, licensed under CC BY-SA 2.0.
|
||||
- `assets/dog.jpeg` is a "Happy Dog" by tedmurphy, licensed under CC BY 2.0.
|
||||
|
||||
[^1]: Refer to the original paper [Learning Transferable Visual Models From
|
||||
Natural Language Supervision ](https://arxiv.org/abs/2103.00020) or [blog
|
||||
post](https://openai.com/research/clip)
|
BIN
clip/assets/cat.jpeg
Normal file
BIN
clip/assets/cat.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 193 KiB |
BIN
clip/assets/dog.jpeg
Normal file
BIN
clip/assets/dog.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 90 KiB |
31
clip/clip.py
Normal file
31
clip/clip.py
Normal file
@ -0,0 +1,31 @@
|
||||
from typing import Tuple
|
||||
|
||||
from image_processor import CLIPImageProcessor
|
||||
from model import CLIPModel
|
||||
from tokenizer import CLIPTokenizer
|
||||
|
||||
|
||||
def load(model_dir: str) -> Tuple[CLIPModel, CLIPTokenizer, CLIPImageProcessor]:
|
||||
model = CLIPModel.from_pretrained(model_dir)
|
||||
tokenizer = CLIPTokenizer.from_pretrained(model_dir)
|
||||
img_processor = CLIPImageProcessor.from_pretrained(model_dir)
|
||||
return model, tokenizer, img_processor
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from PIL import Image
|
||||
|
||||
model, tokenizer, img_processor = load("mlx_model")
|
||||
inputs = {
|
||||
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
|
||||
"pixel_values": img_processor(
|
||||
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
|
||||
),
|
||||
}
|
||||
output = model(**inputs)
|
||||
|
||||
# Get text and image embeddings:
|
||||
text_embeds = output.text_embeds
|
||||
image_embeds = output.image_embeds
|
||||
print("Text embeddings shape:", text_embeds.shape)
|
||||
print("Image embeddings shape:", image_embeds.shape)
|
107
clip/convert.py
Normal file
107
clip/convert.py
Normal file
@ -0,0 +1,107 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
|
||||
def get_model_path(path_or_hf_repo: str) -> Path:
|
||||
model_path = Path(path_or_hf_repo)
|
||||
if not model_path.exists():
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_hf_repo,
|
||||
allow_patterns=[
|
||||
"*.bin",
|
||||
"*.json",
|
||||
"*.txt",
|
||||
],
|
||||
)
|
||||
)
|
||||
return model_path
|
||||
|
||||
|
||||
def torch_to_mx(a: torch.Tensor, *, dtype: str) -> mx.array:
|
||||
# bfloat16 is not numpy convertible. Upcast to float32 to avoid precision loss
|
||||
a = a.to(torch.float32) if dtype == "bfloat16" else a.to(getattr(torch, dtype))
|
||||
return mx.array(a.numpy(), getattr(mx, dtype))
|
||||
|
||||
|
||||
def map_weights(key: str, value: torch.Tensor) -> Tuple[str, mx.array]:
|
||||
key = key.replace("embeddings.", "")
|
||||
key = key.replace("encoder.", "")
|
||||
key = key.replace("position_embedding.weight", "position_embedding")
|
||||
|
||||
# Map attention layers
|
||||
if "self_attn." in key:
|
||||
key = key.replace("self_attn.", "attention.")
|
||||
if "q_proj." in key:
|
||||
key = key.replace("q_proj.", "query_proj.")
|
||||
if "k_proj." in key:
|
||||
key = key.replace("k_proj.", "key_proj.")
|
||||
if "v_proj." in key:
|
||||
key = key.replace("v_proj.", "value_proj.")
|
||||
if "layer_norm1." in key:
|
||||
key = key.replace("layer_norm1.", "ln1.")
|
||||
if "layer_norm2." in key:
|
||||
key = key.replace("layer_norm2.", "ln2.")
|
||||
# Map ffn layers
|
||||
if "mlp.fc1" in key:
|
||||
key = key.replace("mlp.fc1", "linear1")
|
||||
if "mlp.fc2" in key:
|
||||
key = key.replace("mlp.fc2", "linear2")
|
||||
# Fix layernorm typo
|
||||
if "pre_layrnorm" in key:
|
||||
# Fix typo in weights :)
|
||||
key = key.replace("pre_layrnorm", "pre_layernorm")
|
||||
if "patch_embedding.weight" in key:
|
||||
# Initially, value: [out_channels, in_channels, kH, KW].
|
||||
# We want [out_channels, kH, KW, in_channels]
|
||||
value = value.permute(0, 2, 3, 1)
|
||||
return (key, torch_to_mx(value, dtype=str(value.dtype).replace("torch.", "")))
|
||||
|
||||
|
||||
def should_keep_weight(key: str):
|
||||
return not ("position_ids" in key)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Download and Convert (OpenAI) CLIP weights to MLX"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-repo",
|
||||
type=str,
|
||||
default="openai/clip-vit-base-patch32",
|
||||
help="Hugging Face repository name.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="Path to save the MLX model.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
torch_path = get_model_path(args.hf_repo)
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print("[INFO] Loading")
|
||||
torch_weights = torch.load(torch_path / "pytorch_model.bin")
|
||||
print("[INFO] Converting")
|
||||
mlx_weights = dict(map_weights(k, v) for (k, v) in torch_weights.items())
|
||||
mlx_weights = {k: v for (k, v) in mlx_weights.items() if should_keep_weight(k)}
|
||||
print("[INFO] Saving")
|
||||
mx.savez(str(mlx_path / "weights.npz"), **mlx_weights)
|
||||
for fn in ["config.json", "merges.txt", "vocab.json", "preprocessor_config.json"]:
|
||||
shutil.copyfile(
|
||||
str(torch_path / f"{fn}"),
|
||||
str(mlx_path / f"{fn}"),
|
||||
)
|
29
clip/hf_preproc.py
Normal file
29
clip/hf_preproc.py
Normal file
@ -0,0 +1,29 @@
|
||||
import mlx.core as mx
|
||||
import transformers
|
||||
from PIL import Image
|
||||
|
||||
import clip
|
||||
|
||||
hf_model = "openai/clip-vit-base-patch32"
|
||||
mlx_model = "mlx_model"
|
||||
|
||||
model, *_ = clip.load(mlx_model)
|
||||
processor = transformers.CLIPProcessor.from_pretrained(hf_model)
|
||||
|
||||
inputs = processor(
|
||||
text=["a photo of a cat", "a photo of a dog"],
|
||||
images=[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")],
|
||||
return_tensors="np",
|
||||
)
|
||||
|
||||
out = model(
|
||||
input_ids=mx.array(inputs.input_ids),
|
||||
pixel_values=mx.array(inputs.pixel_values).transpose((0, 2, 3, 1)),
|
||||
return_loss=True,
|
||||
)
|
||||
|
||||
print("text embeddings:")
|
||||
print(out.text_embeds)
|
||||
print("image embeddings:")
|
||||
print(out.image_embeds)
|
||||
print(f"CLIP loss: {out.loss.item():.3f}")
|
93
clip/image_processor.py
Normal file
93
clip/image_processor.py
Normal file
@ -0,0 +1,93 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from PIL.Image import Image
|
||||
|
||||
|
||||
class CLIPImageProcessor:
|
||||
"""
|
||||
A simple port of
|
||||
https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/image_processing_clip.py.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
crop_size: int = 224,
|
||||
do_center_crop: bool = True,
|
||||
do_normalize: bool = True,
|
||||
do_resize: bool = True,
|
||||
image_mean: List[float] = [0.48145466, 0.4578275, 0.40821073],
|
||||
image_std: List[float] = [0.26862954, 0.26130258, 0.27577711],
|
||||
size: int = 224,
|
||||
**kwargs
|
||||
) -> None:
|
||||
self.crop_size = crop_size
|
||||
self.do_center_crop = do_center_crop
|
||||
self.do_normalize = do_normalize
|
||||
self.do_resize = do_resize
|
||||
self.image_mean = mx.array(image_mean)
|
||||
self.image_std = mx.array(image_std)
|
||||
self.size = size
|
||||
|
||||
def __call__(self, images: List[Image]) -> mx.array:
|
||||
return mx.concatenate(
|
||||
[self._preprocess(image)[None] for image in images], axis=0
|
||||
)
|
||||
|
||||
def _preprocess(self, image: Image) -> mx.array:
|
||||
if self.do_resize:
|
||||
image = resize(image, self.size)
|
||||
if self.do_center_crop:
|
||||
image = center_crop(image, (self.crop_size, self.crop_size))
|
||||
image = mx.array(np.array(image))
|
||||
image = rescale(image)
|
||||
if self.do_normalize:
|
||||
image = normalize(image, self.image_mean, self.image_std)
|
||||
return image
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(path: str):
|
||||
path = Path(path)
|
||||
with open(path / "preprocessor_config.json", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
return CLIPImageProcessor(**config)
|
||||
|
||||
|
||||
def resize(image: Image, short_size: int) -> Image:
|
||||
"""
|
||||
Resize so small size to short_size
|
||||
"""
|
||||
width, height = image.size
|
||||
short = min(width, height)
|
||||
long = max(width, height)
|
||||
if short == short_size:
|
||||
return image
|
||||
new_short = short_size
|
||||
new_long = int(short_size * long / short)
|
||||
new_size = (new_short, new_long) if width <= height else (new_long, new_short)
|
||||
return image.resize(new_size)
|
||||
|
||||
|
||||
def center_crop(image: Image, size: Tuple[int, int]) -> Image:
|
||||
if size[0] % 2 != 0 or size[1] % 2 != 0:
|
||||
raise ValueError("Only even crop sizes supported.")
|
||||
original_width, original_height = image.size
|
||||
crop_height, crop_width = size
|
||||
top = (original_height - crop_height) // 2
|
||||
bottom = top + crop_height
|
||||
left = (original_width - crop_width) // 2
|
||||
right = left + crop_width
|
||||
return image.crop((left, top, right, bottom))
|
||||
|
||||
|
||||
def rescale(image: mx.array) -> mx.array:
|
||||
return image.astype(mx.float32) * (1 / 255.0)
|
||||
|
||||
|
||||
def normalize(image: mx.array, mean: mx.array, std: mx.array) -> mx.array:
|
||||
return (image - mean) / std
|
283
clip/model.py
Normal file
283
clip/model.py
Normal file
@ -0,0 +1,283 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.core import linalg as LA
|
||||
from mlx.nn.losses import cross_entropy
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPVisionOutput:
|
||||
pooler_output: mx.array
|
||||
last_hidden_state: mx.array
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPTextOutput:
|
||||
pooler_output: mx.array
|
||||
last_hidden_state: mx.array
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPModelOutput:
|
||||
loss: Optional[mx.array]
|
||||
text_embeds: Optional[mx.array]
|
||||
image_embeds: Optional[mx.array]
|
||||
text_model_output: CLIPTextOutput
|
||||
vision_model_output: CLIPVisionOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPTextConfig:
|
||||
num_hidden_layers: int
|
||||
hidden_size: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
max_position_embeddings: int
|
||||
vocab_size: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPVisionConfig:
|
||||
num_hidden_layers: int
|
||||
hidden_size: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
num_channels: int
|
||||
image_size: int
|
||||
patch_size: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPConfig:
|
||||
text_config: CLIPTextConfig
|
||||
vision_config: CLIPVisionConfig
|
||||
projection_dim: int
|
||||
|
||||
|
||||
def quick_gelu(x: mx.array) -> mx.array:
|
||||
"""
|
||||
A fast GELU approximation https://github.com/hendrycks/GELUs
|
||||
"""
|
||||
return x * mx.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
def clip_loss(logits: mx.array) -> mx.array:
|
||||
N, M = logits.shape
|
||||
caption_loss = cross_entropy(logits, mx.arange(N), reduction="mean")
|
||||
image_loss = cross_entropy(logits.T, mx.arange(M), reduction="mean")
|
||||
return (caption_loss + image_loss) / 2.0
|
||||
|
||||
|
||||
class CLIPEncoderLayer(nn.TransformerEncoderLayer):
|
||||
"""The transformer encoder layer from CLIP."""
|
||||
|
||||
def __init__(self, hidden_dim: int, intermediate_dim: int, num_heads: int):
|
||||
super().__init__(
|
||||
dims=hidden_dim,
|
||||
mlp_dims=intermediate_dim,
|
||||
num_heads=num_heads,
|
||||
activation=quick_gelu,
|
||||
norm_first=True,
|
||||
)
|
||||
# Add biases to the attention projections
|
||||
self.attention = nn.MultiHeadAttention(hidden_dim, num_heads, bias=True)
|
||||
|
||||
|
||||
class CLIPTextModel(nn.Module):
|
||||
"""Implements the text encoder transformer from CLIP."""
|
||||
|
||||
def __init__(self, config: CLIPTextConfig):
|
||||
super().__init__()
|
||||
|
||||
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.position_embedding = mx.zeros(
|
||||
(config.max_position_embeddings, config.hidden_size)
|
||||
)
|
||||
self.layers = [
|
||||
CLIPEncoderLayer(
|
||||
config.hidden_size, config.intermediate_size, config.num_attention_heads
|
||||
)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
|
||||
|
||||
def _embed(self, x: mx.array) -> mx.array:
|
||||
embeddings = self.token_embedding(x)
|
||||
embeddings += self.position_embedding[: x.shape[1]]
|
||||
return embeddings
|
||||
|
||||
def __call__(self, x: mx.array) -> CLIPTextOutput:
|
||||
B, N = x.shape
|
||||
eot_tokens = mx.argmax(x, axis=-1)
|
||||
x = self._embed(x)
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
|
||||
for l in self.layers:
|
||||
x = l(x, mask)
|
||||
last_hidden_state = self.final_layer_norm(x)
|
||||
pooler_output = last_hidden_state[mx.arange(B), eot_tokens]
|
||||
|
||||
return CLIPTextOutput(
|
||||
pooler_output=pooler_output, last_hidden_state=last_hidden_state
|
||||
)
|
||||
|
||||
|
||||
class CLIPVisionModel(nn.Module):
|
||||
"""Implements the vision encoder transformer from CLIP."""
|
||||
|
||||
def __init__(self, config: CLIPVisionConfig):
|
||||
super().__init__()
|
||||
|
||||
self.class_embedding = mx.zeros((config.hidden_size,))
|
||||
self.patch_embedding = nn.Conv2d(
|
||||
in_channels=config.num_channels,
|
||||
out_channels=config.hidden_size,
|
||||
kernel_size=config.patch_size,
|
||||
stride=config.patch_size,
|
||||
bias=False,
|
||||
)
|
||||
num_patches = (config.image_size // config.patch_size) ** 2
|
||||
num_positions = num_patches + 1
|
||||
self.position_embedding = mx.zeros((num_positions, config.hidden_size))
|
||||
self.pre_layernorm = nn.LayerNorm(config.hidden_size)
|
||||
self.layers = [
|
||||
CLIPEncoderLayer(
|
||||
config.hidden_size, config.intermediate_size, config.num_attention_heads
|
||||
)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
self.post_layernorm = nn.LayerNorm(config.hidden_size)
|
||||
|
||||
def _embed(self, x: mx.array) -> mx.array:
|
||||
batch_size = x.shape[0]
|
||||
# Patchify using conv:
|
||||
# [batch_size, sqrt(num_patches), sqrt(num_patches), embed_dim]
|
||||
patch_embeddings = self.patch_embedding(x)
|
||||
# [batch_size, num_patches, embed_dim]
|
||||
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
|
||||
embed_dim = patch_embeddings.shape[-1]
|
||||
# Prepend <CLS> embeddings
|
||||
# [batch_size, 1, embed_dim]
|
||||
cls_embeddings = mx.broadcast_to(
|
||||
self.class_embedding, (batch_size, 1, embed_dim)
|
||||
)
|
||||
# [batch_size, num_patches + 1, embed_dim]
|
||||
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
|
||||
# Add positional encoding
|
||||
embeddings += self.position_embedding
|
||||
return embeddings
|
||||
|
||||
def __call__(self, x: mx.array) -> CLIPVisionOutput:
|
||||
x = self._embed(x)
|
||||
x = self.pre_layernorm(x)
|
||||
|
||||
for l in self.layers:
|
||||
x = l(x, mask=None)
|
||||
|
||||
# Extract <CLS> token embedding
|
||||
pooler_output = self.post_layernorm(x[:, 0, :])
|
||||
return CLIPVisionOutput(pooler_output=pooler_output, last_hidden_state=x)
|
||||
|
||||
|
||||
class CLIPModel(nn.Module):
|
||||
def __init__(self, config: CLIPConfig):
|
||||
self.text_model = CLIPTextModel(config.text_config)
|
||||
self.vision_model = CLIPVisionModel(config.vision_config)
|
||||
|
||||
text_embed_dim = config.text_config.hidden_size
|
||||
vision_embed_dim = config.vision_config.hidden_size
|
||||
projection_dim = config.projection_dim
|
||||
|
||||
self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
|
||||
self.text_projection = nn.Linear(text_embed_dim, projection_dim, bias=False)
|
||||
self.logit_scale = mx.array(0.0)
|
||||
|
||||
def get_text_features(self, x: mx.array) -> mx.array:
|
||||
return self.text_projection(self.text_model(x).pooler_output)
|
||||
|
||||
def get_image_features(self, x: mx.array) -> mx.array:
|
||||
return self.visual_projection(self.vision_model(x).pooler_output)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids: Optional[mx.array] = None,
|
||||
pixel_values: Optional[mx.array] = None,
|
||||
return_loss=False,
|
||||
) -> CLIPModelOutput:
|
||||
if input_ids is not None:
|
||||
text_model_output = self.text_model(input_ids)
|
||||
text_embeds = self.text_projection(text_model_output.pooler_output)
|
||||
text_embeds = text_embeds / LA.norm(text_embeds, axis=-1, keepdims=True)
|
||||
else:
|
||||
text_embeds = None
|
||||
text_model_output = None
|
||||
|
||||
if pixel_values is not None:
|
||||
vision_model_output = self.vision_model(pixel_values)
|
||||
image_embeds = self.visual_projection(vision_model_output.pooler_output)
|
||||
image_embeds = image_embeds / LA.norm(image_embeds, axis=-1, keepdims=True)
|
||||
else:
|
||||
image_embeds = None
|
||||
vision_model_output = None
|
||||
|
||||
if return_loss and (input_ids is None or pixel_values is None):
|
||||
raise ValueError("Must provide text and image inputs to compute loss.")
|
||||
|
||||
if return_loss:
|
||||
logit_scale = mx.exp(self.logit_scale)
|
||||
logits = (text_embeds @ image_embeds.T) * logit_scale
|
||||
loss = clip_loss(logits)
|
||||
else:
|
||||
loss = None
|
||||
|
||||
return CLIPModelOutput(
|
||||
loss=loss,
|
||||
text_embeds=text_embeds,
|
||||
image_embeds=image_embeds,
|
||||
vision_model_output=vision_model_output,
|
||||
text_model_output=text_model_output,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(path: str):
|
||||
path = Path(path)
|
||||
|
||||
with open(path / "config.json", "r") as fid:
|
||||
config = json.load(fid)
|
||||
|
||||
text_config = config["text_config"]
|
||||
text_config = CLIPTextConfig(
|
||||
num_hidden_layers=text_config["num_hidden_layers"],
|
||||
hidden_size=text_config["hidden_size"],
|
||||
intermediate_size=text_config["intermediate_size"],
|
||||
num_attention_heads=text_config["num_attention_heads"],
|
||||
max_position_embeddings=text_config["max_position_embeddings"],
|
||||
vocab_size=text_config["vocab_size"],
|
||||
)
|
||||
|
||||
vision_config = config["vision_config"]
|
||||
|
||||
vision_config = CLIPVisionConfig(
|
||||
num_hidden_layers=vision_config["num_hidden_layers"],
|
||||
hidden_size=vision_config["hidden_size"],
|
||||
intermediate_size=vision_config["intermediate_size"],
|
||||
num_attention_heads=vision_config["num_attention_heads"],
|
||||
num_channels=3,
|
||||
image_size=vision_config["image_size"],
|
||||
patch_size=vision_config["patch_size"],
|
||||
)
|
||||
|
||||
config = CLIPConfig(
|
||||
text_config=text_config,
|
||||
vision_config=vision_config,
|
||||
projection_dim=config["projection_dim"],
|
||||
)
|
||||
model = CLIPModel(config)
|
||||
model.load_weights(str(path / "weights.npz"))
|
||||
return model
|
6
clip/requirements.txt
Normal file
6
clip/requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
mlx
|
||||
numpy
|
||||
transformers
|
||||
torch
|
||||
huggingface_hub
|
||||
Pillow
|
136
clip/test.py
Normal file
136
clip/test.py
Normal file
@ -0,0 +1,136 @@
|
||||
import unittest
|
||||
|
||||
import mlx.core as mx
|
||||
import model
|
||||
import numpy as np
|
||||
import torch
|
||||
import transformers
|
||||
from image_processor import CLIPImageProcessor
|
||||
from PIL import Image
|
||||
from tokenizer import CLIPTokenizer
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.image_processing_utils import ChannelDimension
|
||||
|
||||
MLX_PATH = "mlx_model"
|
||||
HF_PATH = "openai/clip-vit-base-patch32"
|
||||
|
||||
|
||||
def load_mlx_models(path):
|
||||
image_proc = CLIPImageProcessor.from_pretrained(path)
|
||||
tokenizer = CLIPTokenizer.from_pretrained(path)
|
||||
clip = model.CLIPModel.from_pretrained(path)
|
||||
return image_proc, tokenizer, clip
|
||||
|
||||
|
||||
def load_hf_models(path):
|
||||
image_proc = transformers.CLIPImageProcessor.from_pretrained(path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(path)
|
||||
clip = transformers.CLIPModel.from_pretrained(path)
|
||||
return image_proc, tokenizer, clip
|
||||
|
||||
|
||||
class TestCLIP(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.mx_image_proc, cls.mx_tokenizer, cls.mx_clip = load_mlx_models(MLX_PATH)
|
||||
cls.hf_image_proc, cls.hf_tokenizer, cls.hf_clip = load_hf_models(HF_PATH)
|
||||
|
||||
def test_image_processor(self):
|
||||
image = Image.open("assets/cat.jpeg")
|
||||
|
||||
mx_data = self.mx_image_proc([image])
|
||||
hf_data = mx.array(
|
||||
np.array(
|
||||
self.hf_image_proc([image], data_format=ChannelDimension.LAST)[
|
||||
"pixel_values"
|
||||
]
|
||||
)
|
||||
)
|
||||
self.assertTrue(mx.allclose(mx_data, hf_data, atol=1e-5))
|
||||
|
||||
def test_text_tokenizer(self):
|
||||
texts = ["a photo of a cat", "a photo of a dog"]
|
||||
for txt in texts:
|
||||
self.assertTrue(
|
||||
np.array_equal(
|
||||
self.mx_tokenizer.tokenize(txt)[None, :],
|
||||
self.hf_tokenizer(txt, return_tensors="np")["input_ids"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_text_encoder(self):
|
||||
texts = ["a photo of a cat", "a photo of a dog"]
|
||||
# Tokenize
|
||||
hf_tokens = self.hf_tokenizer(texts, return_tensors="pt")
|
||||
mx_tokens = self.mx_tokenizer(texts)
|
||||
# Get expected
|
||||
with torch.inference_mode():
|
||||
expected_out = self.hf_clip.text_model(**hf_tokens)
|
||||
expected_last_hidden = expected_out.last_hidden_state.numpy()
|
||||
expected_pooler_output = expected_out.pooler_output.numpy()
|
||||
out = self.mx_clip.text_model(mx_tokens)
|
||||
self.assertTrue(
|
||||
np.allclose(out.last_hidden_state, expected_last_hidden, atol=1e-5)
|
||||
)
|
||||
self.assertTrue(
|
||||
np.allclose(out.pooler_output, expected_pooler_output, atol=1e-5)
|
||||
)
|
||||
|
||||
def test_vision_encoder(self):
|
||||
# Load and process test image
|
||||
x = self.hf_image_proc(
|
||||
images=[Image.open("assets/dog.jpeg")], return_tensors="np"
|
||||
).pixel_values
|
||||
|
||||
# Infer with HuggingFace model
|
||||
with torch.inference_mode():
|
||||
# Get expected
|
||||
x_tc = torch.tensor(x)
|
||||
expected_out = self.hf_clip.vision_model(x_tc)
|
||||
expected_last_hidden = expected_out.last_hidden_state.numpy()
|
||||
expected_pooler_output = expected_out.pooler_output.numpy()
|
||||
|
||||
# Test MLX vision encoder
|
||||
out = self.mx_clip.vision_model(mx.array(x.transpose(0, 2, 3, 1)))
|
||||
self.assertTrue(
|
||||
np.allclose(
|
||||
out.last_hidden_state, expected_last_hidden, rtol=1e-4, atol=1e-3
|
||||
),
|
||||
)
|
||||
self.assertTrue(
|
||||
np.allclose(
|
||||
out.pooler_output, expected_pooler_output, rtol=1e-4, atol=1e-3
|
||||
),
|
||||
)
|
||||
|
||||
def test_clip_model(self):
|
||||
image_input = self.hf_image_proc(
|
||||
images=[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")],
|
||||
return_tensors="np",
|
||||
)["pixel_values"]
|
||||
text = ["a photo of a cat", "a photo of a dog"]
|
||||
tokens = self.hf_tokenizer(text, return_tensors="np")["input_ids"]
|
||||
with torch.inference_mode():
|
||||
expected_out = self.hf_clip(
|
||||
input_ids=torch.tensor(tokens),
|
||||
pixel_values=torch.tensor(image_input),
|
||||
return_loss=True,
|
||||
)
|
||||
|
||||
out = self.mx_clip(
|
||||
input_ids=mx.array(tokens),
|
||||
pixel_values=mx.array(image_input.transpose((0, 2, 3, 1))),
|
||||
return_loss=True,
|
||||
)
|
||||
|
||||
self.assertTrue(
|
||||
np.allclose(out.text_embeds, expected_out.text_embeds, atol=1e-5)
|
||||
)
|
||||
self.assertTrue(
|
||||
np.allclose(out.image_embeds, expected_out.image_embeds, atol=1e-5)
|
||||
)
|
||||
self.assertTrue(np.allclose(out.loss, expected_out.loss, atol=1e-5))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
121
clip/tokenizer.py
Normal file
121
clip/tokenizer.py
Normal file
@ -0,0 +1,121 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import mlx.core as mx
|
||||
import regex
|
||||
|
||||
|
||||
class CLIPTokenizer:
|
||||
"""A simple port of CLIPTokenizer from https://github.com/huggingface/transformers/ ."""
|
||||
|
||||
def __init__(self, bpe_ranks, vocab):
|
||||
self.bpe_ranks = bpe_ranks
|
||||
self.vocab = vocab
|
||||
self.pat = regex.compile(
|
||||
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
||||
regex.IGNORECASE,
|
||||
)
|
||||
self._cache = {self.bos: self.bos, self.eos: self.eos}
|
||||
|
||||
@property
|
||||
def bos(self):
|
||||
return "<|startoftext|>"
|
||||
|
||||
@property
|
||||
def bos_token(self):
|
||||
return self.vocab[self.bos]
|
||||
|
||||
@property
|
||||
def eos(self):
|
||||
return "<|endoftext|>"
|
||||
|
||||
@property
|
||||
def eos_token(self):
|
||||
return self.vocab[self.eos]
|
||||
|
||||
def bpe(self, text):
|
||||
if text in self._cache:
|
||||
return self._cache[text]
|
||||
|
||||
unigrams = list(text[:-1]) + [text[-1] + "</w>"]
|
||||
unique_bigrams = set(zip(unigrams, unigrams[1:]))
|
||||
|
||||
if not unique_bigrams:
|
||||
return unigrams
|
||||
|
||||
# In every iteration try to merge the two most likely bigrams. If none
|
||||
# was merged we are done.
|
||||
#
|
||||
# Ported from https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/tokenization_py
|
||||
while unique_bigrams:
|
||||
bigram = min(
|
||||
unique_bigrams, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))
|
||||
)
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
|
||||
new_unigrams = []
|
||||
skip = False
|
||||
for a, b in zip(unigrams, unigrams[1:]):
|
||||
if skip:
|
||||
skip = False
|
||||
continue
|
||||
|
||||
if (a, b) == bigram:
|
||||
new_unigrams.append(a + b)
|
||||
skip = True
|
||||
|
||||
else:
|
||||
new_unigrams.append(a)
|
||||
|
||||
if not skip:
|
||||
new_unigrams.append(b)
|
||||
|
||||
unigrams = new_unigrams
|
||||
unique_bigrams = set(zip(unigrams, unigrams[1:]))
|
||||
|
||||
self._cache[text] = unigrams
|
||||
|
||||
return unigrams
|
||||
|
||||
def __call__(self, *args: Any, **kwargs: Any) -> Any:
|
||||
return self.tokenize(*args, **kwargs)
|
||||
|
||||
def tokenize(self, text, prepend_bos=True, append_eos=True) -> mx.array:
|
||||
if isinstance(text, list):
|
||||
return mx.array([self.tokenize(t, prepend_bos, append_eos) for t in text])
|
||||
|
||||
# Lower case, cleanup, and split. Hugging Face does a much,
|
||||
# more thorough job here but this should suffice for 95% of
|
||||
# cases.
|
||||
clean_text = regex.sub(r"\s+", " ", text.lower())
|
||||
tokens = regex.findall(self.pat, clean_text)
|
||||
|
||||
# Split the tokens according to the byte-pair merge file
|
||||
bpe_tokens = [ti for t in tokens for ti in self.bpe(t)]
|
||||
|
||||
# Map to token ids and return
|
||||
tokens = []
|
||||
if prepend_bos:
|
||||
tokens.append(self.bos_token)
|
||||
tokens.extend(self.vocab[t] for t in bpe_tokens)
|
||||
if append_eos:
|
||||
tokens.append(self.eos_token)
|
||||
return mx.array(tokens)
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(path: str):
|
||||
path = Path(path)
|
||||
|
||||
with open(path / "vocab.json", encoding="utf-8") as f:
|
||||
vocab = json.load(f)
|
||||
with open(path / "merges.txt", encoding="utf-8") as f:
|
||||
bpe_merges = f.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1]
|
||||
|
||||
bpe_merges = [tuple(m.split()) for m in bpe_merges]
|
||||
bpe_ranks = dict(map(reversed, enumerate(bpe_merges)))
|
||||
|
||||
return CLIPTokenizer(bpe_ranks, vocab)
|
Loading…
Reference in New Issue
Block a user