chore(mlx-lm): fix print_trainable_parameters for quant models (#581)

* chore(mlx-lm): fix print_trainable_parameters for quant models

* chore: clean up

* refactor: use layer type to check quant bits

* chore: address comment
This commit is contained in:
Anchen 2024-03-21 02:41:03 +11:00 committed by GitHub
parent 373dd6f2a2
commit 949f63f309
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 84 additions and 3 deletions

View File

@ -7,6 +7,7 @@ import re
import types
from pathlib import Path
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
import yaml
@ -143,7 +144,15 @@ def build_parser():
def print_trainable_parameters(model):
total_p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
def nparams(m):
if isinstance(m, nn.QuantizedLinear):
return m.weight.size * (32 // m.bits)
return sum(v.size for _, v in tree_flatten(m.parameters()))
leaf_modules = tree_flatten(
model.leaf_modules(), is_leaf=lambda m: isinstance(m, nn.Module)
)
total_p = sum(nparams(m) for _, m in leaf_modules) / 10**6
trainable_p = (
sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
)

View File

@ -1,13 +1,23 @@
# Copyright © 2024 Apple Inc.
import sys
import unittest
from io import StringIO
from unittest.mock import MagicMock
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_flatten
from mlx_lm import tuner, utils
from mlx_lm import lora, tuner
from mlx_lm.tuner.lora import LoRALinear
class TestLora(unittest.TestCase):
def setUp(self):
self.capturedOutput = StringIO()
sys.stdout = self.capturedOutput
def tearDown(self):
sys.stdout = sys.__stdout__
def test_to_lora(self):
from mlx_lm.models import llama
@ -47,6 +57,68 @@ class TestLora(unittest.TestCase):
params["keys"] = ["self_attn.k_proj"]
check_config(params)
def test_quantized_print_trainable_parameters(self):
model = MagicMock()
quantized_linear = MagicMock(spec=nn.QuantizedLinear)
quantized_linear.weight = MagicMock(size=1e6)
quantized_linear.bits = 8
lora_linear = MagicMock(spec=LoRALinear)
lora_linear.weight = MagicMock(size=2e6)
lora_linear.parameters.return_value = [lora_linear.weight]
linear = MagicMock(spec=nn.Linear)
linear.weight = MagicMock(size=3e6)
linear.parameters.return_value = [linear.weight]
model.leaf_modules.return_value = {
"quantized_linear": quantized_linear,
"lora_linear": lora_linear,
"linear": linear,
}
model.trainable_parameters.return_value = {
"layer1.weight": MagicMock(size=1e6),
"layer3.weight": MagicMock(size=2e6),
}
expected_output_8bits = "Trainable parameters: 33.333% (3.000M/9.000M)\n"
lora.print_trainable_parameters(model)
self.assertEqual(self.capturedOutput.getvalue(), expected_output_8bits)
self.capturedOutput.truncate(0)
self.capturedOutput.seek(0)
quantized_linear.weight = MagicMock(size=1e6)
quantized_linear.bits = 4
expected_output_4bits = "Trainable parameters: 23.077% (3.000M/13.000M)\n"
lora.print_trainable_parameters(model)
self.assertEqual(self.capturedOutput.getvalue(), expected_output_4bits)
self.capturedOutput.truncate(0)
self.capturedOutput.seek(0)
def test_print_trainable_parameters(self):
model = MagicMock()
linear1 = MagicMock(spec=nn.Linear)
linear1.weight = MagicMock(size=1e6)
linear1.parameters.return_value = [linear1.weight]
linear2 = MagicMock(spec=nn.Linear)
linear2.weight = MagicMock(size=2e6)
linear2.parameters.return_value = [linear2.weight]
lora_linear = MagicMock(spec=LoRALinear)
lora_linear.weight = MagicMock(size=3e6)
lora_linear.parameters.return_value = [lora_linear.weight]
model.leaf_modules.return_value = {
"linear1": linear1,
"linear2": linear2,
"lora_linear": lora_linear,
}
model.trainable_parameters.return_value = {
"layer1.weight": MagicMock(size=1e6),
"layer3.weight": MagicMock(size=2e6),
}
expected_output = "Trainable parameters: 50.000% (3.000M/6.000M)\n"
lora.print_trainable_parameters(model)
self.assertEqual(self.capturedOutput.getvalue(), expected_output)
if __name__ == "__main__":
unittest.main()