mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
Create sampler chain
This commit is contained in:
parent
932b7c0510
commit
956da0ddc7
@ -35,14 +35,25 @@ def make_sampler(
|
|||||||
"""
|
"""
|
||||||
if temp == 0:
|
if temp == 0:
|
||||||
return lambda x: mx.argmax(x, axis=-1)
|
return lambda x: mx.argmax(x, axis=-1)
|
||||||
elif top_p > 0 and top_p < 1.0:
|
|
||||||
return lambda x: top_p_sampling(x, top_p, temp)
|
# Create sampler chain
|
||||||
elif min_p != 0.0:
|
sampling_methods = []
|
||||||
return lambda x: min_p_sampling(x, min_p, min_tokens_to_keep, temp)
|
if top_k > 0:
|
||||||
elif top_k > 0:
|
sampling_methods.append(lambda x: apply_top_k(x, top_k))
|
||||||
return lambda x: top_k_sampling(x, top_k, temp)
|
if top_p > 0 and top_p < 1.0:
|
||||||
else:
|
sampling_methods.append(lambda x: apply_top_p(x, top_p))
|
||||||
return lambda x: categorical_sampling(x, temp)
|
if min_p != 0.0:
|
||||||
|
sampling_methods.append(lambda x: apply_min_p(x, min_p, min_tokens_to_keep))
|
||||||
|
|
||||||
|
# Apply the sampling methods
|
||||||
|
def sampler(logits):
|
||||||
|
for method in sampling_methods:
|
||||||
|
logits = method(logits)
|
||||||
|
|
||||||
|
# Return the sampled token
|
||||||
|
return categorical_sampling(logits, temp)
|
||||||
|
|
||||||
|
return sampler
|
||||||
|
|
||||||
|
|
||||||
def make_logits_processors(
|
def make_logits_processors(
|
||||||
@ -85,7 +96,7 @@ def make_logits_processors(
|
|||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def top_k_sampling(
|
def apply_top_k(
|
||||||
logprobs: mx.array,
|
logprobs: mx.array,
|
||||||
top_k: int,
|
top_k: int,
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
@ -110,7 +121,7 @@ def top_k_sampling(
|
|||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def min_p_sampling(
|
def apply_min_p(
|
||||||
logprobs: mx.array,
|
logprobs: mx.array,
|
||||||
min_p: float,
|
min_p: float,
|
||||||
min_tokens_to_keep: int = 1,
|
min_tokens_to_keep: int = 1,
|
||||||
@ -171,7 +182,7 @@ def min_p_sampling(
|
|||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def top_p_sampling(logits: mx.array, top_p: float) -> mx.array:
|
def apply_top_p(logits: mx.array, top_p: float) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Apply top-p (nucleus) sampling to logits.
|
Apply top-p (nucleus) sampling to logits.
|
||||||
|
|
||||||
|
@ -1,35 +1,35 @@
|
|||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
from mlx_lm.sample_utils import min_p_sampling, top_k_sampling, top_p_sampling
|
from mlx_lm.sample_utils import apply_min_p, apply_top_k, apply_top_p
|
||||||
|
|
||||||
|
|
||||||
class TestSampleUtils(unittest.TestCase):
|
class TestSampleUtils(unittest.TestCase):
|
||||||
def test_top_p_sampling(self):
|
def test_apply_top_p(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
|
||||||
new_logits = top_p_sampling(logits, 0.3)
|
new_logits = apply_top_p(logits, 0.3)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||||
|
|
||||||
new_logits = top_p_sampling(logits, 0.95)
|
new_logits = apply_top_p(logits, 0.95)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist())
|
self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist())
|
||||||
|
|
||||||
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
new_logits = top_p_sampling(logits, 0.4)
|
new_logits = apply_top_p(logits, 0.4)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
||||||
|
|
||||||
new_logits = top_p_sampling(logits, 0.6)
|
new_logits = apply_top_p(logits, 0.6)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
||||||
)
|
)
|
||||||
|
|
||||||
new_logits = top_p_sampling(logits, 0.95)
|
new_logits = apply_top_p(logits, 0.95)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
||||||
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
||||||
@ -39,45 +39,45 @@ class TestSampleUtils(unittest.TestCase):
|
|||||||
# Batch mode works
|
# Batch mode works
|
||||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
new_logits = top_p_sampling(logits, 0.5)
|
new_logits = apply_top_p(logits, 0.5)
|
||||||
actual_probs = mx.softmax(new_logits, axis=-1)
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||||
)
|
)
|
||||||
|
|
||||||
def test_min_p_sampling(self):
|
def test_apply_min_p(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
new_logits = min_p_sampling(logits, 0.8)
|
new_logits = apply_min_p(logits, 0.8)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||||
|
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
new_logits = min_p_sampling(logits, 0.05)
|
new_logits = apply_min_p(logits, 0.05)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(actual_probs.tolist(), mx.squeeze(probs).tolist())
|
self.assertEqual(actual_probs.tolist(), mx.squeeze(probs).tolist())
|
||||||
|
|
||||||
# Batch mode works
|
# Batch mode works
|
||||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
new_logits = min_p_sampling(logits, 0.7)
|
new_logits = apply_min_p(logits, 0.7)
|
||||||
actual_probs = mx.softmax(new_logits, axis=-1)
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||||
)
|
)
|
||||||
|
|
||||||
def test_top_k_sampling(self):
|
def test_apply_top_k(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
|
||||||
new_logits = top_k_sampling(logits, 1)
|
new_logits = apply_top_k(logits, 1)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||||
|
|
||||||
probs = mx.array([0.6, 0.0, 0.1, 0.3])[None]
|
probs = mx.array([0.6, 0.0, 0.1, 0.3])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
new_logits = top_k_sampling(logits, 2)
|
new_logits = apply_top_k(logits, 2)
|
||||||
actual_probs = mx.softmax(new_logits.squeeze())
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
[round(p, 4) for p in actual_probs.tolist()], [0.6667, 0.0, 0.0, 0.3333]
|
[round(p, 4) for p in actual_probs.tolist()], [0.6667, 0.0, 0.0, 0.3333]
|
||||||
@ -87,7 +87,7 @@ class TestSampleUtils(unittest.TestCase):
|
|||||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
|
||||||
new_logits = top_k_sampling(logits, 1)
|
new_logits = apply_top_k(logits, 1)
|
||||||
actual_probs = mx.softmax(new_logits, axis=-1)
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||||
|
Loading…
Reference in New Issue
Block a user