mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-31 20:04:38 +08:00
Improve doc
This commit is contained in:
@@ -19,14 +19,15 @@ Install [`ffmpeg`](https://ffmpeg.org/):
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
Next, download the Whisper PyTorch checkpoint and convert the weights to MLX format:
|
||||
Next, download the Whisper PyTorch checkpoint and convert the weights to the MLX format. For example, to convert the `tiny` model use:
|
||||
|
||||
```
|
||||
# Take the "tiny" model as an example. Note that you can also convert a local PyTorch checkpoint in OpenAI's format.
|
||||
python convert.py --torch-name-or-path tiny --mlx-path mlx_models/tiny
|
||||
```
|
||||
|
||||
To generate a 4-bit quantized model, use ``-q`` for a full list of options:
|
||||
Note you can also convert a local PyTorch checkpoint which is in the original OpenAI format.
|
||||
|
||||
To generate a 4-bit quantized model, use `-q`. For a full list of options:
|
||||
|
||||
```
|
||||
python convert.py --help
|
||||
|
@@ -113,7 +113,7 @@ def load_torch_model(
|
||||
Parameters
|
||||
----------
|
||||
name_or_path : str
|
||||
one of the official model names listed by `whisper.available_models()` or a local Pytorch checkpoint in OpenAI's format
|
||||
one of the official model names listed by `whisper.available_models()` or a local Pytorch checkpoint which is in the original OpenAI format
|
||||
download_root: str
|
||||
path to download the model files; by default, it uses "~/.cache/whisper"
|
||||
|
||||
|
Reference in New Issue
Block a user