mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-02 05:04:37 +08:00
Merge branch 'ml-explore:main' into completion_only
This commit is contained in:
114
llms/README.md
114
llms/README.md
@@ -16,10 +16,35 @@ conda install -c conda-forge mlx-lm
|
||||
|
||||
The `mlx-lm` package also has:
|
||||
|
||||
- [LoRA and QLoRA fine-tuning](https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md)
|
||||
- [LoRA, QLoRA, and full fine-tuning](https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md)
|
||||
- [Merging models](https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/MERGE.md)
|
||||
- [HTTP model serving](https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/SERVER.md)
|
||||
|
||||
### Quick Start
|
||||
|
||||
To generate text with an LLM use:
|
||||
|
||||
```bash
|
||||
mlx_lm.generate --prompt "Hi!"
|
||||
```
|
||||
|
||||
To chat with an LLM use:
|
||||
|
||||
```bash
|
||||
mlx_lm.chat
|
||||
```
|
||||
|
||||
This will give you a chat REPL that you can use to interact with the LLM. The
|
||||
chat context is preserved during the lifetime of the REPL.
|
||||
|
||||
Commands in `mlx-lm` typically take command line options which let you specify
|
||||
the model, sampling parameters, and more. Use `-h` to see a list of available
|
||||
options for a command, e.g.:
|
||||
|
||||
```bash
|
||||
mlx_lm.generate -h
|
||||
```
|
||||
|
||||
### Python API
|
||||
|
||||
You can use `mlx-lm` as a module:
|
||||
@@ -29,7 +54,14 @@ from mlx_lm import load, generate
|
||||
|
||||
model, tokenizer = load("mlx-community/Mistral-7B-Instruct-v0.3-4bit")
|
||||
|
||||
response = generate(model, tokenizer, prompt="hello", verbose=True)
|
||||
prompt = "Write a story about Einstein"
|
||||
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
response = generate(model, tokenizer, prompt=prompt, verbose=True)
|
||||
```
|
||||
|
||||
To see a description of all the arguments you can do:
|
||||
@@ -38,6 +70,10 @@ To see a description of all the arguments you can do:
|
||||
>>> help(generate)
|
||||
```
|
||||
|
||||
Check out the [generation
|
||||
example](https://github.com/ml-explore/mlx-examples/tree/main/llms/mlx_lm/examples/generate_response.py)
|
||||
to see how to use the API in more detail.
|
||||
|
||||
The `mlx-lm` package also comes with functionality to quantize and optionally
|
||||
upload models to the Hugging Face Hub.
|
||||
|
||||
@@ -75,6 +111,11 @@ model, tokenizer = load(repo)
|
||||
|
||||
prompt = "Write a story about Einstein"
|
||||
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
for t in stream_generate(model, tokenizer, prompt, max_tokens=512):
|
||||
print(t, end="", flush=True)
|
||||
print()
|
||||
@@ -120,10 +161,50 @@ mlx_lm.convert \
|
||||
--upload-repo mlx-community/my-4bit-mistral
|
||||
```
|
||||
|
||||
### Long Prompts and Generations
|
||||
|
||||
`mlx-lm` has some tools to scale efficiently to long prompts and generations:
|
||||
|
||||
- A rotating fixed-size key-value cache.
|
||||
- Prompt caching
|
||||
|
||||
To use the rotating key-value cache pass the argument `--max-kv-size n` where
|
||||
`n` can be any integer. Smaller values like `512` will use very little RAM but
|
||||
result in worse quality. Larger values like `4096` or higher will use more RAM
|
||||
but have better quality.
|
||||
|
||||
Caching prompts can substantially speedup reusing the same long context with
|
||||
different queries. To cache a prompt use `mlx_lm.cache_prompt`. For example:
|
||||
|
||||
```bash
|
||||
cat prompt.txt | mlx_lm.cache_prompt \
|
||||
--model mistralai/Mistral-7B-Instruct-v0.3 \
|
||||
--prompt - \
|
||||
--prompt-cache-file mistral_prompt.safetensors
|
||||
```
|
||||
|
||||
Then use the cached prompt with `mlx_lm.generate`:
|
||||
|
||||
```
|
||||
mlx_lm.generate \
|
||||
--prompt-cache-file mistral_prompt.safetensors \
|
||||
--prompt "\nSummarize the above text."
|
||||
```
|
||||
|
||||
The cached prompt is treated as a prefix to the supplied prompt. Also notice
|
||||
when using a cached prompt, the model to use is read from the cache and need
|
||||
not be supplied explicitly.
|
||||
|
||||
Prompt caching can also be used in the Python API in order to to avoid
|
||||
recomputing the prompt. This is useful in multi-turn dialogues or across
|
||||
requests that use the same context. See the
|
||||
[example](https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/examples/chat.py)
|
||||
for more usage details.
|
||||
|
||||
### Supported Models
|
||||
|
||||
The example supports Hugging Face format Mistral, Llama, and Phi-2 style
|
||||
models. If the model you want to run is not supported, file an
|
||||
`mlx-lm` supports thousands of Hugging Face format LLMs. If the model you want to
|
||||
run is not supported, file an
|
||||
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
||||
submit a pull request.
|
||||
|
||||
@@ -167,3 +248,28 @@ model, tokenizer = load(
|
||||
tokenizer_config={"eos_token": "<|endoftext|>", "trust_remote_code": True},
|
||||
)
|
||||
```
|
||||
|
||||
### Large Models
|
||||
|
||||
> [!NOTE]
|
||||
This requires macOS 15.0 or higher to work.
|
||||
|
||||
Models which are large relative to the total RAM available on the machine can
|
||||
be slow. `mlx-lm` will attempt to make them faster by wiring the memory
|
||||
occupied by the model and cache. This requires macOS 15 or higher to
|
||||
work.
|
||||
|
||||
If you see the following warning message:
|
||||
|
||||
> [WARNING] Generating with a model that requires ...
|
||||
|
||||
then the model will likely be slow on the given machine. If the model fits in
|
||||
RAM then it can often be sped up by increasing the system wired memory limit.
|
||||
To increase the limit, set the following `sysctl`:
|
||||
|
||||
```bash
|
||||
sudo sysctl iogpu.wired_limit_mb=N
|
||||
```
|
||||
|
||||
The value `N` should be larger than the size of the model in megabytes but
|
||||
smaller than the memory size of the machine.
|
||||
|
@@ -57,6 +57,9 @@ mlx_lm.lora \
|
||||
--iters 600
|
||||
```
|
||||
|
||||
To fine-tune the full model weights, add the `--fine-tune-type full` flag.
|
||||
Currently supported fine-tuning types are `lora` (default), `dora`, and `full`.
|
||||
|
||||
The `--data` argument must specify a path to a `train.jsonl`, `valid.jsonl`
|
||||
when using `--train` and a path to a `test.jsonl` when using `--test`. For more
|
||||
details on the data format see the section on [Data](#Data).
|
||||
@@ -67,8 +70,8 @@ mistralai/Mistral-7B-v0.1`.
|
||||
If `--model` points to a quantized model, then the training will use QLoRA,
|
||||
otherwise it will use regular LoRA.
|
||||
|
||||
By default, the adapter config and weights are saved in `adapters/`. You can
|
||||
specify the output location with `--adapter-path`.
|
||||
By default, the adapter config and learned weights are saved in `adapters/`.
|
||||
You can specify the output location with `--adapter-path`.
|
||||
|
||||
You can resume fine-tuning with an existing adapter with
|
||||
`--resume-adapter-file <path_to_adapters.safetensors>`.
|
||||
@@ -118,7 +121,7 @@ mlx_lm.fuse --model <path_to_model>
|
||||
```
|
||||
|
||||
This will by default load the adapters from `adapters/`, and save the fused
|
||||
model in the path `lora_fused_model/`. All of these are configurable.
|
||||
model in the path `fused_model/`. All of these are configurable.
|
||||
|
||||
To upload a fused model, supply the `--upload-repo` and `--hf-path` arguments
|
||||
to `mlx_lm.fuse`. The latter is the repo name of the original model, which is
|
||||
@@ -141,7 +144,7 @@ mlx_lm.fuse \
|
||||
--export-gguf
|
||||
```
|
||||
|
||||
This will save the GGUF model in `lora_fused_model/ggml-model-f16.gguf`. You
|
||||
This will save the GGUF model in `fused_model/ggml-model-f16.gguf`. You
|
||||
can specify the file name with `--gguf-path`.
|
||||
|
||||
## Data
|
||||
@@ -160,50 +163,97 @@ For fine-tuning (`--train`), the data loader expects a `train.jsonl` and a
|
||||
`valid.jsonl` to be in the data directory. For evaluation (`--test`), the data
|
||||
loader expects a `test.jsonl` in the data directory.
|
||||
|
||||
Currently, `*.jsonl` files support three data formats: `chat`,
|
||||
`completions`, and `text`. Here are three examples of these formats:
|
||||
Currently, `*.jsonl` files support `chat`, `tools`, `completions`, and `text`
|
||||
data formats. Here are examples of these formats:
|
||||
|
||||
`chat`:
|
||||
|
||||
```jsonl
|
||||
{"messages": [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello."}, {"role": "assistant", "content": "How can I assistant you today."}]}
|
||||
```
|
||||
|
||||
`tools`:
|
||||
|
||||
```jsonl
|
||||
{"messages":[{"role":"user","content":"What is the weather in San Francisco?"},{"role":"assistant","tool_calls":[{"id":"call_id","type":"function","function":{"name":"get_current_weather","arguments":"{\"location\": \"San Francisco, USA\", \"format\": \"celsius\"}"}}]}],"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and country, eg. San Francisco, USA"},"format":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location","format"]}}}]}
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>View the expanded single data tool format</summary>
|
||||
|
||||
```jsonl
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello."
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "How can I assistant you today."
|
||||
}
|
||||
]
|
||||
"messages": [
|
||||
{ "role": "user", "content": "What is the weather in San Francisco?" },
|
||||
{
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_id",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"arguments": "{\"location\": \"San Francisco, USA\", \"format\": \"celsius\"}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and country, eg. San Francisco, USA"
|
||||
},
|
||||
"format": { "type": "string", "enum": ["celsius", "fahrenheit"] }
|
||||
},
|
||||
"required": ["location", "format"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
The format for the `arguments` field in a function varies for different models.
|
||||
Common formats include JSON strings and dictionaries. The example provided
|
||||
follows the format used by
|
||||
[OpenAI](https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-examples)
|
||||
and [Mistral
|
||||
AI](https://github.com/mistralai/mistral-finetune?tab=readme-ov-file#instruct).
|
||||
A dictionary format is used in Hugging Face's [chat
|
||||
templates](https://huggingface.co/docs/transformers/main/en/chat_templating#a-complete-tool-use-example).
|
||||
Refer to the documentation for the model you are fine-tuning for more details.
|
||||
|
||||
</details>
|
||||
|
||||
`completions`:
|
||||
|
||||
```jsonl
|
||||
{
|
||||
"prompt": "What is the capital of France?",
|
||||
"completion": "Paris."
|
||||
}
|
||||
{"prompt": "What is the capital of France?", "completion": "Paris."}
|
||||
```
|
||||
|
||||
`text`:
|
||||
|
||||
```jsonl
|
||||
{
|
||||
"text": "This is an example for the model."
|
||||
}
|
||||
{"text": "This is an example for the model."}
|
||||
```
|
||||
|
||||
Note, the format is automatically determined by the dataset. Note also, keys in
|
||||
each line not expected by the loader will be ignored.
|
||||
|
||||
> [!NOTE]
|
||||
> Each example in the datasets must be on a single line. Do not put more than
|
||||
> one example per line and do not split an example across multiple lines.
|
||||
|
||||
### Hugging Face Datasets
|
||||
|
||||
To use Hugging Face datasets, first install the `datasets` package:
|
||||
@@ -212,7 +262,13 @@ To use Hugging Face datasets, first install the `datasets` package:
|
||||
pip install datasets
|
||||
```
|
||||
|
||||
Specify the Hugging Face dataset arguments in a YAML config. For example:
|
||||
If the Hugging Face dataset is already in a supported format, you can specify
|
||||
it on the command line. For example, pass `--data mlx-community/wikisql` to
|
||||
train on the pre-formatted WikiwSQL data.
|
||||
|
||||
Otherwise, provide a mapping of keys in the dataset to the features MLX LM
|
||||
expects. Use a YAML config to specify the Hugging Face dataset arguments. For
|
||||
example:
|
||||
|
||||
```
|
||||
hf_dataset:
|
||||
@@ -231,11 +287,13 @@ hf_dataset:
|
||||
- Arguments specified in `config` will be passed as keyword arguments to
|
||||
[`datasets.load_dataset`](https://huggingface.co/docs/datasets/v2.20.0/en/package_reference/loading_methods#datasets.load_dataset).
|
||||
|
||||
In general, for the `chat` and `completions` formats, Hugging Face [chat
|
||||
templates](https://huggingface.co/blog/chat-templates) are used. This applies
|
||||
the model's chat template by default. If the model does not have a chat
|
||||
template, then Hugging Face will use a default. For example, the final text in
|
||||
the `chat` example above with Hugging Face's default template becomes:
|
||||
In general, for the `chat`, `tools` and `completions` formats, Hugging Face
|
||||
[chat
|
||||
templates](https://huggingface.co/docs/transformers/main/en/chat_templating)
|
||||
are used. This applies the model's chat template by default. If the model does
|
||||
not have a chat template, then Hugging Face will use a default. For example,
|
||||
the final text in the `chat` example above with Hugging Face's default template
|
||||
becomes:
|
||||
|
||||
```text
|
||||
<|im_start|>system
|
||||
@@ -263,7 +321,7 @@ of memory. Here are some tips to reduce memory use should you need to do so:
|
||||
setting this to `2` or `1` will reduce memory consumption. This may slow
|
||||
things down a little, but will also reduce the memory use.
|
||||
|
||||
3. Reduce the number of layers to fine-tune with `--lora-layers`. The default
|
||||
3. Reduce the number of layers to fine-tune with `--num-layers`. The default
|
||||
is `16`, so you can try `8` or `4`. This reduces the amount of memory
|
||||
needed for back propagation. It may also reduce the quality of the
|
||||
fine-tuned model if you are fine-tuning with a lot of data.
|
||||
@@ -285,7 +343,7 @@ mlx_lm.lora \
|
||||
--model mistralai/Mistral-7B-v0.1 \
|
||||
--train \
|
||||
--batch-size 1 \
|
||||
--lora-layers 4 \
|
||||
--num-layers 4 \
|
||||
--data wikisql
|
||||
```
|
||||
|
||||
@@ -295,4 +353,5 @@ tokens-per-second, using the MLX Example
|
||||
data set.
|
||||
|
||||
[^lora]: Refer to the [arXiv paper](https://arxiv.org/abs/2106.09685) for more details on LoRA.
|
||||
|
||||
[^qlora]: Refer to the paper [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
|
||||
|
@@ -50,7 +50,7 @@ curl localhost:8080/v1/chat/completions \
|
||||
- `role_mapping`: (Optional) A dictionary to customize the role prefixes in
|
||||
the generated prompt. If not provided, the default mappings are used.
|
||||
|
||||
- `stop`: (Optional) An array of strings or a single string. Thesse are
|
||||
- `stop`: (Optional) An array of strings or a single string. These are
|
||||
sequences of tokens on which the generation should stop.
|
||||
|
||||
- `max_tokens`: (Optional) An integer specifying the maximum number of tokens
|
||||
@@ -78,3 +78,54 @@ curl localhost:8080/v1/chat/completions \
|
||||
- `logprobs`: (Optional) An integer specifying the number of top tokens and
|
||||
corresponding log probabilities to return for each output in the generated
|
||||
sequence. If set, this can be any value between 1 and 10, inclusive.
|
||||
|
||||
- `model`: (Optional) A string path to a local model or Hugging Face repo id.
|
||||
If the path is local is must be relative to the directory the server was
|
||||
started in.
|
||||
|
||||
- `adapters`: (Optional) A string path to low-rank adapters. The path must be
|
||||
relative to the directory the server was started in.
|
||||
|
||||
### Response Fields
|
||||
|
||||
- `id`: A unique identifier for the chat.
|
||||
|
||||
- `system_fingerprint`: A unique identifier for the system.
|
||||
|
||||
- `object`: Any of "chat.completions", "chat.completions.chunk" (for
|
||||
streaming), or "text.completion".
|
||||
|
||||
- `model`: The model repo or path (e.g. `"mlx-community/Llama-3.2-3B-Instruct-4bit"`).
|
||||
|
||||
- `created`: A time-stamp for when the request was processed.
|
||||
|
||||
- `choices`: A list of outputs. Each output is a dictionary containing the fields:
|
||||
- `index`: The index in the list.
|
||||
- `logprobs`: A dictionary containing the fields:
|
||||
- `token_logprobs`: A list of the log probabilities for the generated
|
||||
tokens.
|
||||
- `tokens`: A list of the generated token ids.
|
||||
- `top_logprobs`: A list of lists. Each list contains the `logprobs`
|
||||
top tokens (if requested) with their corresponding probabilities.
|
||||
- `finish_reason`: The reason the completion ended. This can be either of
|
||||
`"stop"` or `"length"`.
|
||||
- `message`: The text response from the model.
|
||||
|
||||
- `usage`: A dictionary containing the fields:
|
||||
- `prompt_tokens`: The number of prompt tokens processed.
|
||||
- `completion_tokens`: The number of tokens generated.
|
||||
- `total_tokens`: The total number of tokens, i.e. the sum of the above two fields.
|
||||
|
||||
### List Models
|
||||
|
||||
Use the `v1/models` endpoint to list available models:
|
||||
|
||||
```shell
|
||||
curl localhost:8080/v1/models -H "Content-Type: application/json"
|
||||
```
|
||||
|
||||
This will return a list of locally available models where each model in the
|
||||
list contains the following fields:
|
||||
|
||||
- `id`: The Hugging Face repo id.
|
||||
- `created`: A time-stamp representing the model creation time.
|
||||
|
@@ -1,4 +1,9 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import os
|
||||
|
||||
from ._version import __version__
|
||||
|
||||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
|
||||
|
||||
from .utils import convert, generate, load, stream_generate
|
||||
from .version import __version__
|
||||
|
@@ -1,3 +1,3 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
__version__ = "0.16.0"
|
||||
__version__ = "0.19.3"
|
180
llms/mlx_lm/cache_prompt.py
Normal file
180
llms/mlx_lm/cache_prompt.py
Normal file
@@ -0,0 +1,180 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import sys
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
from .models.cache import make_prompt_cache, save_prompt_cache
|
||||
from .utils import load, maybe_quantize_kv_cache
|
||||
|
||||
DEFAULT_QUANTIZED_KV_START = 5000
|
||||
|
||||
|
||||
def setup_arg_parser():
|
||||
"""Set up and return the argument parser."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Cache the state of a prompt to be reused with mlx_lm.generate"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to the local model directory or Hugging Face repo.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--adapter-path",
|
||||
type=str,
|
||||
help="Optional path for the trained adapter weights and config.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trust-remote-code",
|
||||
action="store_true",
|
||||
help="Enable trusting remote code for tokenizer",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--eos-token",
|
||||
type=str,
|
||||
default=None,
|
||||
help="End of sequence token for tokenizer",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore-chat-template",
|
||||
action="store_true",
|
||||
help="Use the raw prompt without the tokenizer's chat template.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-default-chat-template",
|
||||
action="store_true",
|
||||
help="Use the default chat template",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-limit-gb",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the MLX cache limit in GB",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-kv-size",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the maximum key-value cache size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt-cache-file",
|
||||
help="The file to save the prompt cache in",
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
required=True,
|
||||
help="Message to be processed by the model ('-' reads from stdin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-bits",
|
||||
type=int,
|
||||
help="Number of bits for KV cache quantization. "
|
||||
"Defaults to no quantization.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-group-size",
|
||||
type=int,
|
||||
help="Group size for KV cache quantization.",
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quantized-kv-start",
|
||||
help="When --kv-bits is set, start quantizing the KV cache "
|
||||
"from this step onwards.",
|
||||
type=int,
|
||||
default=DEFAULT_QUANTIZED_KV_START,
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = setup_arg_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.cache_limit_gb is not None:
|
||||
mx.metal.set_cache_limit(args.cache_limit_gb * 1024 * 1024 * 1024)
|
||||
|
||||
# Building tokenizer_config
|
||||
tokenizer_config = {"trust_remote_code": True if args.trust_remote_code else None}
|
||||
if args.eos_token is not None:
|
||||
tokenizer_config["eos_token"] = args.eos_token
|
||||
|
||||
model, tokenizer = load(
|
||||
args.model,
|
||||
adapter_path=args.adapter_path,
|
||||
tokenizer_config=tokenizer_config,
|
||||
)
|
||||
|
||||
args.prompt = sys.stdin.read() if args.prompt == "-" else args.prompt
|
||||
|
||||
if args.use_default_chat_template:
|
||||
if tokenizer.chat_template is None:
|
||||
tokenizer.chat_template = tokenizer.default_chat_template
|
||||
|
||||
if not args.ignore_chat_template and (
|
||||
hasattr(tokenizer, "apply_chat_template")
|
||||
and tokenizer.chat_template is not None
|
||||
):
|
||||
messages = [{"role": "user", "content": args.prompt}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Treat the prompt as a prefix assuming that the suffix will be
|
||||
# provided at generation time.
|
||||
test_prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": "<query>"}],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
n = len(test_prompt) - test_prompt.index("<query>") - len("<query>")
|
||||
prompt = prompt[:-n]
|
||||
else:
|
||||
prompt = args.prompt
|
||||
|
||||
cache = make_prompt_cache(model, args.max_kv_size)
|
||||
y = mx.array(tokenizer.encode(prompt))
|
||||
|
||||
# Process the prompt
|
||||
processed = 0
|
||||
step_size = 512
|
||||
start = time.time()
|
||||
max_msg_len = 0
|
||||
while y.size > 0:
|
||||
|
||||
model(y[:step_size][None], cache=cache)
|
||||
mx.eval([c.state for c in cache])
|
||||
processed += min(y.size, step_size)
|
||||
y = y[step_size:]
|
||||
current = time.time()
|
||||
speed = processed / (current - start)
|
||||
msg = f"\rProcessed {processed:6d} tokens ({speed:6.2f} tok/s)"
|
||||
max_msg_len = max(max_msg_len, len(msg))
|
||||
print(msg + " " * (max_msg_len - len(msg)), end="", flush=True)
|
||||
|
||||
maybe_quantize_kv_cache(
|
||||
cache, args.quantized_kv_start, args.kv_group_size, args.kv_bits
|
||||
)
|
||||
|
||||
print()
|
||||
print(f"Peak memory: {mx.metal.get_peak_memory() / 2**30:.3f} GB")
|
||||
|
||||
print("Saving...")
|
||||
metadata = {}
|
||||
metadata["model"] = args.model
|
||||
metadata["chat_template"] = tokenizer.chat_template
|
||||
metadata["tokenizer_config"] = json.dumps(tokenizer_config)
|
||||
print(f"Peak memory: {mx.metal.get_peak_memory() / 2**30:.3f} GB")
|
||||
save_prompt_cache(args.prompt_cache_file, cache, metadata)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
82
llms/mlx_lm/chat.py
Normal file
82
llms/mlx_lm/chat.py
Normal file
@@ -0,0 +1,82 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
from .models.cache import load_prompt_cache, make_prompt_cache, save_prompt_cache
|
||||
from .utils import load, stream_generate
|
||||
|
||||
DEFAULT_TEMP = 0.0
|
||||
DEFAULT_TOP_P = 1.0
|
||||
DEFAULT_SEED = 0
|
||||
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
|
||||
|
||||
def setup_arg_parser():
|
||||
"""Set up and return the argument parser."""
|
||||
parser = argparse.ArgumentParser(description="Chat with an LLM")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
help="The path to the local model directory or Hugging Face repo.",
|
||||
default=DEFAULT_MODEL,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--adapter-path",
|
||||
type=str,
|
||||
help="Optional path for the trained adapter weights and config.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp", type=float, default=DEFAULT_TEMP, help="Sampling temperature"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-p", type=float, default=DEFAULT_TOP_P, help="Sampling top-p"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=DEFAULT_SEED, help="PRNG seed")
|
||||
parser.add_argument(
|
||||
"--max-kv-size",
|
||||
type=int,
|
||||
help="Set the maximum key-value cache size",
|
||||
default=None,
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = setup_arg_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
model, tokenizer = load(
|
||||
args.model,
|
||||
adapter_path=args.adapter_path,
|
||||
tokenizer_config={"trust_remote_code": True},
|
||||
)
|
||||
|
||||
print(f"[INFO] Starting chat session with {args.model}. To exit, enter 'q'.")
|
||||
prompt_cache = make_prompt_cache(model, args.max_kv_size)
|
||||
while True:
|
||||
query = input(">> ")
|
||||
if query == "q":
|
||||
break
|
||||
messages = [{"role": "user", "content": query}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
for response in stream_generate(
|
||||
model,
|
||||
tokenizer,
|
||||
prompt,
|
||||
temp=args.temp,
|
||||
top_p=args.top_p,
|
||||
prompt_cache=prompt_cache,
|
||||
):
|
||||
print(response, flush=True, end="")
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -31,7 +31,7 @@ def configure_parser() -> argparse.ArgumentParser:
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
help="Type to save the parameters, ignored if -q is given.",
|
||||
help="Type to save the non-quantized parameters.",
|
||||
type=str,
|
||||
choices=["float16", "bfloat16", "float32"],
|
||||
default="float16",
|
||||
|
53
llms/mlx_lm/examples/chat.py
Normal file
53
llms/mlx_lm/examples/chat.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
"""
|
||||
An example of a multi-turn chat with prompt caching.
|
||||
"""
|
||||
|
||||
from mlx_lm import generate, load
|
||||
from mlx_lm.models.cache import load_prompt_cache, make_prompt_cache, save_prompt_cache
|
||||
|
||||
model, tokenizer = load("mlx-community/Mistral-7B-Instruct-v0.3-4bit")
|
||||
|
||||
# Make the initial prompt cache for the model
|
||||
prompt_cache = make_prompt_cache(model)
|
||||
|
||||
# User turn
|
||||
prompt = "Hi my name is <Name>."
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Assistant response
|
||||
response = generate(
|
||||
model,
|
||||
tokenizer,
|
||||
prompt=prompt,
|
||||
verbose=True,
|
||||
temp=0.0,
|
||||
prompt_cache=prompt_cache,
|
||||
)
|
||||
|
||||
# User turn
|
||||
prompt = "What's my name?"
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Assistant response
|
||||
response = generate(
|
||||
model,
|
||||
tokenizer,
|
||||
prompt=prompt,
|
||||
verbose=True,
|
||||
temp=0.0,
|
||||
prompt_cache=prompt_cache,
|
||||
)
|
||||
|
||||
# Save the prompt cache to disk to reuse it at a later time
|
||||
save_prompt_cache("mistral_prompt.safetensors", prompt_cache)
|
||||
|
||||
# Load the prompt cache from disk
|
||||
prompt_cache = load_prompt_cache("mistral_prompt.safetensors")
|
42
llms/mlx_lm/examples/generate_response.py
Normal file
42
llms/mlx_lm/examples/generate_response.py
Normal file
@@ -0,0 +1,42 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
from mlx_lm import generate, load
|
||||
|
||||
# Specify the checkpoint
|
||||
checkpoint = "mistralai/Mistral-7B-Instruct-v0.3"
|
||||
|
||||
# Load the corresponding model and tokenizer
|
||||
model, tokenizer = load(path_or_hf_repo=checkpoint)
|
||||
|
||||
# Specify the prompt and conversation history
|
||||
prompt = "Why is the sky blue?"
|
||||
conversation = [{"role": "user", "content": prompt}]
|
||||
|
||||
# Transform the prompt into the chat template
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
conversation=conversation, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Specify the maximum number of tokens
|
||||
max_tokens = 1_000
|
||||
|
||||
# Specify if tokens and timing information will be printed
|
||||
verbose = True
|
||||
|
||||
# Some optional arguments for causal language model generation
|
||||
generation_args = {
|
||||
"temp": 0.7,
|
||||
"repetition_penalty": 1.2,
|
||||
"repetition_context_size": 20,
|
||||
"top_p": 0.95,
|
||||
}
|
||||
|
||||
# Generate a response with the specified settings
|
||||
response = generate(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
prompt=prompt,
|
||||
max_tokens=max_tokens,
|
||||
verbose=verbose,
|
||||
**generation_args,
|
||||
)
|
@@ -1,8 +1,12 @@
|
||||
# The path to the local model directory or Hugging Face repo.
|
||||
model: "mlx_model"
|
||||
|
||||
# Whether or not to train (boolean)
|
||||
train: true
|
||||
|
||||
# The fine-tuning method: "lora", "dora", or "full".
|
||||
fine_tune_type: lora
|
||||
|
||||
# Directory with {train, valid, test}.jsonl files
|
||||
data: "/path/to/training/data"
|
||||
|
||||
@@ -10,7 +14,7 @@ data: "/path/to/training/data"
|
||||
seed: 0
|
||||
|
||||
# Number of layers to fine-tune
|
||||
lora_layers: 16
|
||||
num_layers: 16
|
||||
|
||||
# Minibatch size.
|
||||
batch_size: 4
|
||||
@@ -51,9 +55,6 @@ max_seq_length: 2048
|
||||
# Use gradient checkpointing to reduce memory use.
|
||||
grad_checkpoint: false
|
||||
|
||||
# Use DoRA instead of LoRA.
|
||||
use_dora: false
|
||||
|
||||
# LoRA parameters can only be specified in a config file
|
||||
lora_parameters:
|
||||
# The layer keys to apply LoRA to.
|
||||
|
@@ -6,9 +6,9 @@ from pathlib import Path
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
|
||||
from .gguf import convert_to_gguf
|
||||
from .tuner.dora import DoRALinear
|
||||
from .tuner.lora import LoRALinear, LoRASwitchLinear
|
||||
from .tuner.utils import apply_lora_layers, dequantize
|
||||
from .tuner.dora import DoRAEmbedding, DoRALinear
|
||||
from .tuner.lora import LoRAEmbedding, LoRALinear, LoRASwitchLinear
|
||||
from .tuner.utils import dequantize, load_adapters
|
||||
from .utils import (
|
||||
fetch_from_hub,
|
||||
get_model_path,
|
||||
@@ -29,7 +29,7 @@ def parse_arguments() -> argparse.Namespace:
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-path",
|
||||
default="lora_fused_model",
|
||||
default="fused_model",
|
||||
help="The path to save the fused model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -77,15 +77,14 @@ def main() -> None:
|
||||
model, config, tokenizer = fetch_from_hub(model_path)
|
||||
|
||||
model.freeze()
|
||||
model = apply_lora_layers(model, args.adapter_path)
|
||||
model = load_adapters(model, args.adapter_path)
|
||||
|
||||
fused_linears = [
|
||||
(n, m.to_linear())
|
||||
for n, m in model.named_modules()
|
||||
if isinstance(m, (LoRASwitchLinear, LoRALinear, DoRALinear))
|
||||
(n, m.fuse()) for n, m in model.named_modules() if hasattr(m, "fuse")
|
||||
]
|
||||
|
||||
model.update_modules(tree_unflatten(fused_linears))
|
||||
if fused_linears:
|
||||
model.update_modules(tree_unflatten(fused_linears))
|
||||
|
||||
if args.de_quantize:
|
||||
print("De-quantizing model")
|
||||
|
@@ -1,17 +1,25 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import sys
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
from .models.cache import QuantizedKVCache, load_prompt_cache
|
||||
from .utils import generate, load
|
||||
|
||||
DEFAULT_MODEL_PATH = "mlx_model"
|
||||
DEFAULT_PROMPT = "hello"
|
||||
DEFAULT_MAX_TOKENS = 100
|
||||
DEFAULT_TEMP = 0.6
|
||||
DEFAULT_TEMP = 0.0
|
||||
DEFAULT_TOP_P = 1.0
|
||||
DEFAULT_SEED = 0
|
||||
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||
DEFAULT_QUANTIZED_KV_START = 5000
|
||||
|
||||
|
||||
def str2bool(string):
|
||||
return string.lower() not in ["false", "f"]
|
||||
|
||||
|
||||
def setup_arg_parser():
|
||||
@@ -20,8 +28,11 @@ def setup_arg_parser():
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to the local model directory or Hugging Face repo.",
|
||||
help=(
|
||||
"The path to the local model directory or Hugging Face repo. "
|
||||
f"If no model is specified, then {DEFAULT_MODEL} is used."
|
||||
),
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--adapter-path",
|
||||
@@ -40,7 +51,9 @@ def setup_arg_parser():
|
||||
help="End of sequence token for tokenizer",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt", default=DEFAULT_PROMPT, help="Message to be processed by the model"
|
||||
"--prompt",
|
||||
default=DEFAULT_PROMPT,
|
||||
help="Message to be processed by the model ('-' reads from stdin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
@@ -66,17 +79,48 @@ def setup_arg_parser():
|
||||
action="store_true",
|
||||
help="Use the default chat template",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Log verbose output when 'True' or 'T' or only print the response when 'False' or 'F'",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--colorize",
|
||||
action="store_true",
|
||||
help="Colorize output based on T[0] probability",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-limit-gb",
|
||||
"--max-kv-size",
|
||||
type=int,
|
||||
help="Set the maximum key-value cache size",
|
||||
default=None,
|
||||
help="Set the MLX cache limit in GB",
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt-cache-file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="A file containing saved KV caches to avoid recomputing them",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-bits",
|
||||
type=int,
|
||||
help="Number of bits for KV cache quantization. "
|
||||
"Defaults to no quantization.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-group-size",
|
||||
type=int,
|
||||
help="Group size for KV cache quantization.",
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quantized-kv-start",
|
||||
help="When --kv-bits is set, start quantizing the KV cache "
|
||||
"from this step onwards.",
|
||||
type=int,
|
||||
default=DEFAULT_QUANTIZED_KV_START,
|
||||
)
|
||||
return parser
|
||||
|
||||
@@ -114,16 +158,46 @@ def main():
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
if args.cache_limit_gb is not None:
|
||||
mx.metal.set_cache_limit(args.cache_limit_gb * 1024 * 1024 * 1024)
|
||||
# Load the prompt cache and metadata if a cache file is provided
|
||||
using_cache = args.prompt_cache_file is not None
|
||||
if using_cache:
|
||||
prompt_cache, metadata = load_prompt_cache(
|
||||
args.prompt_cache_file,
|
||||
return_metadata=True,
|
||||
)
|
||||
if isinstance(prompt_cache[0], QuantizedKVCache):
|
||||
if args.kv_bits is not None and args.kv_bits != prompt_cache[0].bits:
|
||||
raise ValueError(
|
||||
"--kv-bits does not match the kv cache loaded from --prompt-cache-file."
|
||||
)
|
||||
if args.kv_group_size != prompt_cache[0].group_size:
|
||||
raise ValueError(
|
||||
"--kv-group-size does not match the kv cache loaded from --prompt-cache-file."
|
||||
)
|
||||
|
||||
# Building tokenizer_config
|
||||
tokenizer_config = {"trust_remote_code": True if args.trust_remote_code else None}
|
||||
tokenizer_config = (
|
||||
{} if not using_cache else json.loads(metadata["tokenizer_config"])
|
||||
)
|
||||
if args.trust_remote_code:
|
||||
tokenizer_config["trust_remote_code"] = True
|
||||
if args.eos_token is not None:
|
||||
tokenizer_config["eos_token"] = args.eos_token
|
||||
|
||||
model_path = args.model
|
||||
if using_cache:
|
||||
if model_path is None:
|
||||
model_path = metadata["model"]
|
||||
elif model_path != metadata["model"]:
|
||||
raise ValueError(
|
||||
f"Providing a different model ({model_path}) than that "
|
||||
f"used to create the prompt cache ({metadata['model']}) "
|
||||
"is an error."
|
||||
)
|
||||
model_path = model_path or DEFAULT_MODEL
|
||||
|
||||
model, tokenizer = load(
|
||||
args.model,
|
||||
model_path,
|
||||
adapter_path=args.adapter_path,
|
||||
tokenizer_config=tokenizer_config,
|
||||
)
|
||||
@@ -131,30 +205,56 @@ def main():
|
||||
if args.use_default_chat_template:
|
||||
if tokenizer.chat_template is None:
|
||||
tokenizer.chat_template = tokenizer.default_chat_template
|
||||
elif using_cache:
|
||||
tokenizer.chat_template = metadata["chat_template"]
|
||||
|
||||
if not args.ignore_chat_template and (
|
||||
hasattr(tokenizer, "apply_chat_template")
|
||||
and tokenizer.chat_template is not None
|
||||
):
|
||||
messages = [{"role": "user", "content": args.prompt}]
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": sys.stdin.read() if args.prompt == "-" else args.prompt,
|
||||
}
|
||||
]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Treat the prompt as a suffix assuming that the prefix is in the
|
||||
# stored kv cache.
|
||||
if using_cache:
|
||||
test_prompt = tokenizer.apply_chat_template(
|
||||
[{"role": "user", "content": "<query>"}],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
prompt = prompt[test_prompt.index("<query>") :]
|
||||
else:
|
||||
prompt = args.prompt
|
||||
|
||||
if args.colorize and not args.verbose:
|
||||
raise ValueError("Cannot use --colorize with --verbose=False")
|
||||
formatter = colorprint_by_t0 if args.colorize else None
|
||||
|
||||
generate(
|
||||
response = generate(
|
||||
model,
|
||||
tokenizer,
|
||||
prompt,
|
||||
args.max_tokens,
|
||||
verbose=True,
|
||||
verbose=args.verbose,
|
||||
formatter=formatter,
|
||||
temp=args.temp,
|
||||
top_p=args.top_p,
|
||||
max_kv_size=args.max_kv_size,
|
||||
prompt_cache=prompt_cache if using_cache else None,
|
||||
kv_bits=args.kv_bits,
|
||||
kv_group_size=args.kv_group_size,
|
||||
quantized_kv_start=args.quantized_kv_start,
|
||||
)
|
||||
if not args.verbose:
|
||||
print(response)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -59,7 +59,7 @@ class HfVocab:
|
||||
for token_id in range(self.vocab_size_base):
|
||||
if token_id in self.added_tokens_ids:
|
||||
continue
|
||||
token_text = reverse_vocab[token_id].encode("utf-8")
|
||||
token_text = reverse_vocab[token_id]
|
||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
||||
token_id, token_text, self.special_ids
|
||||
)
|
||||
@@ -67,7 +67,7 @@ class HfVocab:
|
||||
def get_token_type(
|
||||
self, token_id: int, token_text: bytes, special_ids: Set[int]
|
||||
) -> TokenType:
|
||||
if re.fullmatch(rb"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
if re.fullmatch(r"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
return TokenType.BYTE
|
||||
return TokenType.CONTROL if token_id in special_ids else TokenType.NORMAL
|
||||
|
||||
@@ -77,14 +77,12 @@ class HfVocab:
|
||||
def added_tokens(self) -> Iterable[Tuple[bytes, float, TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
if text in self.specials:
|
||||
toktype = self.get_token_type(
|
||||
self.specials[text], b"", self.special_ids
|
||||
)
|
||||
toktype = self.get_token_type(self.specials[text], "", self.special_ids)
|
||||
score = self.get_token_score(self.specials[text])
|
||||
else:
|
||||
toktype = TokenType.USER_DEFINED
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, toktype
|
||||
yield text, score, toktype
|
||||
|
||||
def has_newline_token(self):
|
||||
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
||||
@@ -243,15 +241,18 @@ def prepare_metadata(config, vocab):
|
||||
metadata["tokenizer.ggml.tokens"] = tokens
|
||||
metadata["tokenizer.ggml.scores"] = mx.array(scores, dtype=mx.float32)
|
||||
metadata["tokenizer.ggml.token_type"] = mx.array(toktypes, dtype=mx.uint32)
|
||||
metadata["tokenizer.ggml.bos_token_id"] = mx.array(
|
||||
vocab.tokenizer.bos_token_id, dtype=mx.uint32
|
||||
)
|
||||
metadata["tokenizer.ggml.eos_token_id"] = mx.array(
|
||||
vocab.tokenizer.eos_token_id, dtype=mx.uint32
|
||||
)
|
||||
metadata["tokenizer.ggml.unknown_token_id"] = mx.array(
|
||||
vocab.tokenizer.unk_token_id, dtype=mx.uint32
|
||||
)
|
||||
if vocab.tokenizer.bos_token_id is not None:
|
||||
metadata["tokenizer.ggml.bos_token_id"] = mx.array(
|
||||
vocab.tokenizer.bos_token_id, dtype=mx.uint32
|
||||
)
|
||||
if vocab.tokenizer.eos_token_id is not None:
|
||||
metadata["tokenizer.ggml.eos_token_id"] = mx.array(
|
||||
vocab.tokenizer.eos_token_id, dtype=mx.uint32
|
||||
)
|
||||
if vocab.tokenizer.unk_token_id is not None:
|
||||
metadata["tokenizer.ggml.unknown_token_id"] = mx.array(
|
||||
vocab.tokenizer.unk_token_id, dtype=mx.uint32
|
||||
)
|
||||
|
||||
metadata = {k: v for k, v in metadata.items() if v is not None}
|
||||
return metadata
|
||||
|
@@ -15,9 +15,9 @@ from .tokenizer_utils import TokenizerWrapper
|
||||
from .tuner.datasets import load_dataset
|
||||
from .tuner.trainer import TrainingArgs, TrainingCallback, evaluate, train
|
||||
from .tuner.utils import (
|
||||
apply_lora_layers,
|
||||
build_schedule,
|
||||
linear_to_lora_layers,
|
||||
load_adapters,
|
||||
print_trainable_parameters,
|
||||
)
|
||||
from .utils import load, save_config
|
||||
@@ -41,9 +41,10 @@ yaml_loader.add_implicit_resolver(
|
||||
CONFIG_DEFAULTS = {
|
||||
"model": "mlx_model",
|
||||
"train": False,
|
||||
"fine_tune_type": "lora",
|
||||
"data": "data/",
|
||||
"seed": 0,
|
||||
"lora_layers": 16,
|
||||
"num_layers": 16,
|
||||
"batch_size": 4,
|
||||
"iters": 1000,
|
||||
"val_batches": 25,
|
||||
@@ -58,7 +59,6 @@ CONFIG_DEFAULTS = {
|
||||
"max_seq_length": 2048,
|
||||
"lr_schedule": None,
|
||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||
"use_dora": False,
|
||||
}
|
||||
|
||||
|
||||
@@ -79,10 +79,20 @@ def build_parser():
|
||||
parser.add_argument(
|
||||
"--data",
|
||||
type=str,
|
||||
help="Directory with {train, valid, test}.jsonl files",
|
||||
help=(
|
||||
"Directory with {train, valid, test}.jsonl files or the name "
|
||||
"of a Hugging Face dataset (e.g., 'mlx-community/wikisql')"
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lora-layers",
|
||||
"--fine-tune-type",
|
||||
type=str,
|
||||
choices=["lora", "dora", "full"],
|
||||
default="lora",
|
||||
help="Type of fine-tuning to perform: lora, dora, or full.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
help="Number of layers to fine-tune. Default is 16, use -1 for all.",
|
||||
)
|
||||
@@ -107,12 +117,12 @@ def build_parser():
|
||||
parser.add_argument(
|
||||
"--resume-adapter-file",
|
||||
type=str,
|
||||
help="Load path to resume training with the given adapters.",
|
||||
help="Load path to resume training from the given fine-tuned weights.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--adapter-path",
|
||||
type=str,
|
||||
help="Save/load path for the adapters.",
|
||||
help="Save/load path for the fine-tuned weights.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-every",
|
||||
@@ -148,9 +158,6 @@ def build_parser():
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=None, help="The PRNG seed")
|
||||
parser.add_argument(
|
||||
"--use-dora", action="store_true", default=None, help="Use DoRA to finetune."
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@@ -162,21 +169,31 @@ def train_model(
|
||||
valid_set,
|
||||
training_callback: TrainingCallback = None,
|
||||
):
|
||||
# Freeze all layers
|
||||
model.freeze()
|
||||
if args.fine_tune_type == "full":
|
||||
for l in model.layers[-min(args.num_layers, 0) :]:
|
||||
l.unfreeze()
|
||||
elif args.fine_tune_type in ["lora", "dora"]:
|
||||
# Convert linear layers to lora/dora layers and unfreeze in the process
|
||||
linear_to_lora_layers(
|
||||
model,
|
||||
args.num_layers,
|
||||
args.lora_parameters,
|
||||
use_dora=(args.fine_tune_type == "dora"),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Received unknown fine-tune-type {args.fine_tune_type}")
|
||||
|
||||
# Convert linear layers to lora layers and unfreeze in the process
|
||||
linear_to_lora_layers(model, args.lora_layers, args.lora_parameters)
|
||||
|
||||
# Resume training the given adapters.
|
||||
# Resume from weights if provided
|
||||
if args.resume_adapter_file is not None:
|
||||
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
|
||||
print(f"Loading fine-tuned weights from {args.resume_adapter_file}")
|
||||
model.load_weights(args.resume_adapter_file, strict=False)
|
||||
|
||||
print_trainable_parameters(model)
|
||||
|
||||
adapter_path = Path(args.adapter_path)
|
||||
adapter_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
adapter_file = adapter_path / "adapters.safetensors"
|
||||
save_config(vars(args), adapter_path / "adapter_config.json")
|
||||
|
||||
@@ -240,7 +257,7 @@ def run(args, training_callback: TrainingCallback = None):
|
||||
if args.test and not args.train:
|
||||
# Allow testing without LoRA layers by providing empty path
|
||||
if args.adapter_path != "":
|
||||
apply_lora_layers(model, args.adapter_path)
|
||||
load_adapters(model, args.adapter_path)
|
||||
|
||||
elif args.train:
|
||||
print("Training")
|
||||
|
@@ -1,46 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import inspect
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_map
|
||||
|
||||
|
||||
def create_additive_causal_mask(N: int, offset: int = 0):
|
||||
rinds = mx.arange(offset + N)
|
||||
linds = mx.arange(offset, offset + N) if offset else rinds
|
||||
mask = linds[:, None] < rinds[None]
|
||||
return mask * -1e9
|
||||
|
||||
|
||||
class KVCache:
|
||||
|
||||
def __init__(self, head_dim, n_kv_heads):
|
||||
self.n_kv_heads = n_kv_heads
|
||||
self.head_dim = head_dim
|
||||
self.keys = None
|
||||
self.values = None
|
||||
self.offset = 0
|
||||
self.step = 256
|
||||
|
||||
def update_and_fetch(self, keys, values):
|
||||
prev = self.offset
|
||||
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
|
||||
n_steps = (self.step + keys.shape[2] - 1) // self.step
|
||||
shape = (1, self.n_kv_heads, n_steps * self.step, self.head_dim)
|
||||
new_k = mx.zeros(shape, keys.dtype)
|
||||
new_v = mx.zeros(shape, values.dtype)
|
||||
if self.keys is not None:
|
||||
if prev % self.step != 0:
|
||||
self.keys = self.keys[..., :prev, :]
|
||||
self.values = self.values[..., :prev, :]
|
||||
self.keys = mx.concatenate([self.keys, new_k], axis=2)
|
||||
self.values = mx.concatenate([self.values, new_v], axis=2)
|
||||
else:
|
||||
self.keys, self.values = new_k, new_v
|
||||
|
||||
self.offset += keys.shape[2]
|
||||
self.keys[..., prev : self.offset, :] = keys
|
||||
self.values[..., prev : self.offset, :] = values
|
||||
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
|
||||
from .cache import QuantizedKVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -54,3 +21,93 @@ class BaseModelArgs:
|
||||
if k in inspect.signature(cls).parameters
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def create_causal_mask(N: int, offset: int = 0, window_size: Optional[int] = None):
|
||||
rinds = mx.arange(offset + N)
|
||||
linds = mx.arange(offset, offset + N) if offset else rinds
|
||||
linds = linds[:, None]
|
||||
rinds = rinds[None]
|
||||
mask = linds < rinds
|
||||
if window_size is not None:
|
||||
mask = mask | (linds > rinds + window_size)
|
||||
return mask * -1e9
|
||||
|
||||
|
||||
def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
|
||||
T = h.shape[1]
|
||||
if T > 1:
|
||||
window_size = None
|
||||
offset = 0
|
||||
if cache is not None and cache[0] is not None:
|
||||
c = cache[0]
|
||||
if hasattr(c, "max_size"):
|
||||
offset = min(c.max_size - 1, c.offset)
|
||||
window_size = c.max_size
|
||||
else:
|
||||
offset = c.offset
|
||||
mask = create_causal_mask(T, offset, window_size=window_size)
|
||||
mask = mask.astype(h.dtype)
|
||||
else:
|
||||
mask = None
|
||||
return mask
|
||||
|
||||
|
||||
def quantized_scaled_dot_product_attention(
|
||||
queries: mx.array,
|
||||
q_keys: tuple[mx.array, mx.array, mx.array],
|
||||
q_values: tuple[mx.array, mx.array, mx.array],
|
||||
scale: float,
|
||||
mask: Optional[mx.array],
|
||||
group_size: int = 64,
|
||||
bits: int = 8,
|
||||
) -> mx.array:
|
||||
B, n_q_heads, L, D = queries.shape
|
||||
n_kv_heads = q_keys[0].shape[-3]
|
||||
n_repeats = n_q_heads // n_kv_heads
|
||||
|
||||
queries *= scale
|
||||
|
||||
if n_repeats > 1:
|
||||
queries = mx.reshape(queries, (B, n_kv_heads, n_repeats, L, D))
|
||||
q_keys = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_keys)
|
||||
q_values = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_values)
|
||||
|
||||
scores = mx.quantized_matmul(
|
||||
queries, *q_keys, transpose=True, group_size=group_size, bits=bits
|
||||
)
|
||||
if mask is not None:
|
||||
scores += mask
|
||||
scores = mx.softmax(scores, axis=-1, precise=True)
|
||||
out = mx.quantized_matmul(
|
||||
scores, *q_values, transpose=False, group_size=group_size, bits=bits
|
||||
)
|
||||
|
||||
if n_repeats > 1:
|
||||
out = mx.reshape(out, (B, n_q_heads, L, D))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def scaled_dot_product_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
cache,
|
||||
scale: float,
|
||||
mask: Optional[mx.array],
|
||||
) -> mx.array:
|
||||
if isinstance(cache, QuantizedKVCache):
|
||||
return quantized_scaled_dot_product_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
scale=scale,
|
||||
mask=mask,
|
||||
group_size=cache.group_size,
|
||||
bits=cache.bits,
|
||||
)
|
||||
else:
|
||||
return mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=scale, mask=mask
|
||||
)
|
||||
|
438
llms/mlx_lm/models/cache.py
Normal file
438
llms/mlx_lm/models/cache.py
Normal file
@@ -0,0 +1,438 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def make_prompt_cache(
|
||||
model: nn.Module,
|
||||
max_kv_size: Optional[int] = None,
|
||||
) -> List[Any]:
|
||||
"""
|
||||
Construct the model's cache for use when cgeneration.
|
||||
|
||||
This function will defer the cache construction to the model if it has a
|
||||
``make_cache`` method, otherwise it will make a default KV cache.
|
||||
|
||||
Args:
|
||||
model (nn.Module): The language model.
|
||||
max_kv_size (Optional[int]): If provided and the model does not have a
|
||||
``make_cache`` method, a ``RotatingKVCache`` is used with a maximum
|
||||
size of ``max_kv_size``
|
||||
"""
|
||||
if hasattr(model, "make_cache"):
|
||||
return model.make_cache()
|
||||
|
||||
num_layers = len(model.layers)
|
||||
if max_kv_size is not None:
|
||||
return [
|
||||
RotatingKVCache(max_size=max_kv_size, keep=4) for _ in range(num_layers)
|
||||
]
|
||||
else:
|
||||
return [KVCache() for _ in range(num_layers)]
|
||||
|
||||
|
||||
def save_prompt_cache(file_name: str, cache: List[Any], metadata: Dict[str, str] = {}):
|
||||
"""
|
||||
Save a pre-computed prompt cache to a file.
|
||||
|
||||
Args:
|
||||
file_name (str): The ``.safetensors`` file name.
|
||||
cache (List[Any]): The model state.
|
||||
metadata (Dict[str, str]): Optional metadata to save along with model
|
||||
state.
|
||||
"""
|
||||
cache_data = [c.state for c in cache]
|
||||
cache_info = [c.meta_state for c in cache]
|
||||
cache_data = dict(tree_flatten(cache_data))
|
||||
cache_classes = [type(c).__name__ for c in cache]
|
||||
cache_metadata = [cache_info, metadata, cache_classes]
|
||||
cache_metadata = dict(tree_flatten(cache_metadata))
|
||||
mx.save_safetensors(file_name, cache_data, cache_metadata)
|
||||
|
||||
|
||||
def load_prompt_cache(file_name, return_metadata=False):
|
||||
"""
|
||||
Load a prompt cache from a file.
|
||||
|
||||
Args:
|
||||
file_name (str): The ``.safetensors`` file name.
|
||||
return_metadata (bool): Whether or not to return metadata.
|
||||
Default: ``False``.
|
||||
|
||||
Returns:
|
||||
List[Any] or Tuple[List[Any], Dict[str, str]]: The prompt cache and
|
||||
the metadata if requested.
|
||||
"""
|
||||
arrays, cache_metadata = mx.load(file_name, return_metadata=True)
|
||||
arrays = tree_unflatten(list(arrays.items()))
|
||||
cache_metadata = tree_unflatten(list(cache_metadata.items()))
|
||||
info, metadata, classes = cache_metadata
|
||||
cache = [globals()[c]() for c in classes]
|
||||
for c, state, meta_state in zip(cache, arrays, info):
|
||||
c.state = state
|
||||
c.meta_state = meta_state
|
||||
if return_metadata:
|
||||
return cache, metadata
|
||||
return cache
|
||||
|
||||
|
||||
def can_trim_prompt_cache(cache: List[Any]) -> bool:
|
||||
"""
|
||||
Check if model's cache can be trimmed.
|
||||
"""
|
||||
return all(c.is_trimmable() for c in cache)
|
||||
|
||||
|
||||
def trim_prompt_cache(cache: List[Any], num_tokens: int) -> List[Any]:
|
||||
"""
|
||||
Trim the model's cache by the given number of tokens.
|
||||
|
||||
This function will trim the cache if possible (in-place) and return the
|
||||
number of tokens that were trimmed.
|
||||
|
||||
Args:
|
||||
cache (List[Any]): The model's cache.
|
||||
num_tokens (int): The number of tokens to trim.
|
||||
|
||||
Returns:
|
||||
(int): The number of tokens that were trimmed.
|
||||
"""
|
||||
if not can_trim_prompt_cache(cache) or len(cache) == 0:
|
||||
return 0
|
||||
return [c.trim(num_tokens) for c in cache][0]
|
||||
|
||||
|
||||
class _BaseCache:
|
||||
@property
|
||||
def state(self):
|
||||
return []
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
if v is not None and v:
|
||||
raise ValueError("This cache has no state but a state was set.")
|
||||
|
||||
@property
|
||||
def meta_state(self):
|
||||
return ""
|
||||
|
||||
@meta_state.setter
|
||||
def meta_state(self, v):
|
||||
if v is not None and v:
|
||||
raise ValueError("This cache has no meta_state but a meta_state was set.")
|
||||
|
||||
def is_trimmable(self):
|
||||
return False
|
||||
|
||||
|
||||
class QuantizedKVCache(_BaseCache):
|
||||
def __init__(self, group_size: int = 64, bits: int = 8):
|
||||
self.keys = None
|
||||
self.values = None
|
||||
self.offset = 0
|
||||
self.step = 256
|
||||
self.group_size = group_size
|
||||
self.bits = bits
|
||||
|
||||
def update_and_fetch(self, keys, values):
|
||||
B, n_kv_heads, num_steps, k_head_dim = keys.shape
|
||||
v_head_dim = values.shape[-1]
|
||||
prev = self.offset
|
||||
|
||||
if self.keys is None or (prev + num_steps) > self.keys[0].shape[-2]:
|
||||
el_per_int = 8 * mx.uint32.size // self.bits
|
||||
new_steps = (self.step + num_steps - 1) // self.step * self.step
|
||||
shape = (B, n_kv_heads, new_steps)
|
||||
|
||||
def init_quant(dim):
|
||||
return (
|
||||
mx.zeros((*shape, dim // el_per_int), dtype=mx.uint32),
|
||||
mx.zeros((*shape, dim // self.group_size), dtype=keys.dtype),
|
||||
mx.zeros((*shape, dim // self.group_size), dtype=keys.dtype),
|
||||
)
|
||||
|
||||
def expand_quant(x):
|
||||
new_x = mx.zeros((*shape, x.shape[-1]), dtype=x.dtype)
|
||||
return mx.concatenate([x, new_x], axis=-2)
|
||||
|
||||
if self.keys is not None:
|
||||
if prev % self.step != 0:
|
||||
self.keys, self.values = tree_map(
|
||||
lambda x: x[..., :prev, :], (self.keys, self.values)
|
||||
)
|
||||
|
||||
self.keys, self.values = tree_map(
|
||||
expand_quant, (self.keys, self.values)
|
||||
)
|
||||
else:
|
||||
self.keys, self.values = init_quant(k_head_dim), init_quant(v_head_dim)
|
||||
|
||||
self.offset += num_steps
|
||||
|
||||
keys = mx.quantize(keys, group_size=self.group_size, bits=self.bits)
|
||||
values = mx.quantize(values, group_size=self.group_size, bits=self.bits)
|
||||
for i in range(len(self.keys)):
|
||||
self.keys[i][..., prev : self.offset, :] = keys[i]
|
||||
self.values[i][..., prev : self.offset, :] = values[i]
|
||||
|
||||
return tree_map(lambda x: x[..., : self.offset, :], (self.keys, self.values))
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
if self.offset == self.keys[0].shape[2]:
|
||||
return self.keys, self.values
|
||||
else:
|
||||
return tree_map(
|
||||
lambda x: x[..., : self.offset, :], (self.keys, self.values)
|
||||
)
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
self.keys, self.values = v
|
||||
|
||||
@property
|
||||
def meta_state(self):
|
||||
return tuple(map(str, (self.step, self.offset, self.group_size, self.bits)))
|
||||
|
||||
@meta_state.setter
|
||||
def meta_state(self, v):
|
||||
self.step, self.offset, self.group_size, self.bits = map(int, v)
|
||||
|
||||
def is_trimmable(self):
|
||||
return True
|
||||
|
||||
def trim(self, n):
|
||||
n = min(self.offset, n)
|
||||
self.offset -= n
|
||||
return n
|
||||
|
||||
|
||||
class KVCache(_BaseCache):
|
||||
def __init__(self):
|
||||
self.keys = None
|
||||
self.values = None
|
||||
self.offset = 0
|
||||
self.step = 256
|
||||
|
||||
def update_and_fetch(self, keys, values):
|
||||
prev = self.offset
|
||||
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
|
||||
B, n_kv_heads, _, k_head_dim = keys.shape
|
||||
v_head_dim = values.shape[3]
|
||||
n_steps = (self.step + keys.shape[2] - 1) // self.step
|
||||
k_shape = (B, n_kv_heads, n_steps * self.step, k_head_dim)
|
||||
v_shape = (B, n_kv_heads, n_steps * self.step, v_head_dim)
|
||||
new_k = mx.zeros(k_shape, keys.dtype)
|
||||
new_v = mx.zeros(v_shape, values.dtype)
|
||||
if self.keys is not None:
|
||||
if prev % self.step != 0:
|
||||
self.keys = self.keys[..., :prev, :]
|
||||
self.values = self.values[..., :prev, :]
|
||||
self.keys = mx.concatenate([self.keys, new_k], axis=2)
|
||||
self.values = mx.concatenate([self.values, new_v], axis=2)
|
||||
else:
|
||||
self.keys, self.values = new_k, new_v
|
||||
|
||||
self.offset += keys.shape[2]
|
||||
self.keys[..., prev : self.offset, :] = keys
|
||||
self.values[..., prev : self.offset, :] = values
|
||||
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
if self.offset == self.keys.shape[2]:
|
||||
return self.keys, self.values
|
||||
else:
|
||||
return (
|
||||
self.keys[..., : self.offset, :],
|
||||
self.values[..., : self.offset, :],
|
||||
)
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
self.keys, self.values = v
|
||||
self.offset = self.keys.shape[2]
|
||||
|
||||
def is_trimmable(self):
|
||||
return True
|
||||
|
||||
def trim(self, n):
|
||||
n = min(self.offset, n)
|
||||
self.offset -= n
|
||||
return n
|
||||
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4) -> QuantizedKVCache:
|
||||
quant_cache = QuantizedKVCache(group_size=group_size, bits=bits)
|
||||
quant_cache.offset = self.offset
|
||||
if self.keys is not None:
|
||||
quant_cache.keys = mx.quantize(self.keys, group_size=group_size, bits=bits)
|
||||
quant_cache.values = mx.quantize(
|
||||
self.values, group_size=group_size, bits=bits
|
||||
)
|
||||
return quant_cache
|
||||
|
||||
|
||||
class RotatingKVCache(_BaseCache):
|
||||
|
||||
def __init__(self, max_size=None, keep=0, step=256):
|
||||
self.keep = keep
|
||||
self.keys = None
|
||||
self.values = None
|
||||
self.offset = 0
|
||||
self.max_size = max_size
|
||||
self.step = step
|
||||
self._idx = 0
|
||||
|
||||
def _trim(self, trim_size, v, append=None):
|
||||
to_cat = []
|
||||
if trim_size > 0:
|
||||
to_cat = [v[..., : self.keep, :], v[..., trim_size + self.keep :, :]]
|
||||
else:
|
||||
to_cat = [v]
|
||||
if append is not None:
|
||||
to_cat.append(append)
|
||||
return mx.concatenate(to_cat, axis=2)
|
||||
|
||||
def _temporal_order(self, v):
|
||||
"""
|
||||
Rearrange the cache into temporal order, slicing off the end if unused.
|
||||
"""
|
||||
if self._idx == v.shape[2]:
|
||||
return v
|
||||
elif self._idx < self.offset:
|
||||
return mx.concatenate(
|
||||
[
|
||||
v[..., : self.keep, :],
|
||||
v[..., self._idx :, :],
|
||||
v[..., self.keep : self._idx, :],
|
||||
],
|
||||
axis=2,
|
||||
)
|
||||
else:
|
||||
return v[..., : self._idx, :]
|
||||
|
||||
def _update_concat(self, keys, values):
|
||||
if self.keys is None:
|
||||
self.keys = keys
|
||||
self.values = values
|
||||
else:
|
||||
# Put the keys/values in temporal order to
|
||||
# preserve context
|
||||
self.keys = self._temporal_order(self.keys)
|
||||
self.values = self._temporal_order(self.values)
|
||||
|
||||
# The largest size is self.max_size + S - 1 to ensure
|
||||
# every token gets at least self.max_size context
|
||||
trim_size = self._idx - self.max_size + 1
|
||||
self.keys = self._trim(trim_size, self.keys, keys)
|
||||
self.values = self._trim(trim_size, self.values, values)
|
||||
self.offset += keys.shape[2]
|
||||
self._idx = self.keys.shape[2]
|
||||
return self.keys, self.values
|
||||
|
||||
def _update_in_place(self, keys, values):
|
||||
# May not have hit the max size yet, so potentially
|
||||
# keep growing the cache
|
||||
B, n_kv_heads, S, k_head_dim = keys.shape
|
||||
prev = self.offset
|
||||
if self.keys is None or (
|
||||
prev >= self.keys.shape[2] and self.keys.shape[2] < self.max_size
|
||||
):
|
||||
v_head_dim = values.shape[3]
|
||||
new_size = min(self.step, self.max_size - prev)
|
||||
k_shape = (B, n_kv_heads, new_size, k_head_dim)
|
||||
v_shape = (B, n_kv_heads, new_size, v_head_dim)
|
||||
new_k = mx.zeros(k_shape, keys.dtype)
|
||||
new_v = mx.zeros(v_shape, values.dtype)
|
||||
if self.keys is not None:
|
||||
self.keys = mx.concatenate([self.keys, new_k], axis=2)
|
||||
self.values = mx.concatenate([self.values, new_v], axis=2)
|
||||
else:
|
||||
self.keys, self.values = new_k, new_v
|
||||
self._idx = prev
|
||||
|
||||
# Trim if needed
|
||||
trim_size = self.keys.shape[2] - self.max_size
|
||||
if trim_size > 0:
|
||||
self.keys = self._trim(trim_size, self.keys)
|
||||
self.values = self._trim(trim_size, self.values)
|
||||
self._idx = self.max_size
|
||||
|
||||
# Rotate
|
||||
if self._idx == self.max_size:
|
||||
self._idx = self.keep
|
||||
|
||||
# Assign
|
||||
self.keys[..., self._idx : self._idx + S, :] = keys
|
||||
self.values[..., self._idx : self._idx + S, :] = values
|
||||
self.offset += S
|
||||
self._idx += S
|
||||
|
||||
# If the buffer is not full, slice off the end
|
||||
if self.offset < self.max_size:
|
||||
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
|
||||
return self.keys, self.values
|
||||
|
||||
def update_and_fetch(self, keys, values):
|
||||
if keys.shape[2] == 1:
|
||||
return self._update_in_place(keys, values)
|
||||
return self._update_concat(keys, values)
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
if self.offset < self.keys.shape[2]:
|
||||
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
|
||||
else:
|
||||
return self.keys, self.values
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
self.keys, self.values = v
|
||||
|
||||
@property
|
||||
def meta_state(self):
|
||||
return tuple(
|
||||
map(str, (self.keep, self.max_size, self.step, self.offset, self._idx))
|
||||
)
|
||||
|
||||
@meta_state.setter
|
||||
def meta_state(self, v):
|
||||
self.keep, self.max_size, self.step, self.offset, self._idx = map(
|
||||
int,
|
||||
v,
|
||||
)
|
||||
|
||||
def is_trimmable(self):
|
||||
return self.offset < self.max_size
|
||||
|
||||
def trim(self, n):
|
||||
n = min(self.offset, n)
|
||||
self.offset -= n
|
||||
self._idx -= n
|
||||
return n
|
||||
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4) -> QuantizedKVCache:
|
||||
raise NotImplementedError("RotatingKVCache Quantization NYI")
|
||||
|
||||
|
||||
class MambaCache(_BaseCache):
|
||||
def __init__(self):
|
||||
self.cache = [None, None]
|
||||
|
||||
def __setitem__(self, idx, value):
|
||||
self.cache[idx] = value
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.cache[idx]
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
return self.cache
|
||||
|
||||
@state.setter
|
||||
def state(self, v):
|
||||
self.cache = v
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -67,7 +69,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -91,8 +93,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
@@ -127,7 +129,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
h = self.input_layernorm(x)
|
||||
attn_h = self.self_attn(h, mask, cache)
|
||||
@@ -157,10 +159,7 @@ class CohereModel(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -191,11 +190,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -47,7 +49,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
|
||||
qkv = self.Wqkv(x)
|
||||
@@ -72,8 +74,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.out_proj(output)
|
||||
@@ -90,7 +92,7 @@ class NormAttnNorm(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
h = self.attn(self.norm_1(x), mask=mask, cache=cache)
|
||||
x = h + x
|
||||
@@ -177,7 +179,7 @@ class DecoderLayer(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r, h = self.norm_attn_norm(x, mask, cache)
|
||||
out = self.ffn(h) + r
|
||||
@@ -199,11 +201,7 @@ class DBRX(nn.Module):
|
||||
):
|
||||
h = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
T = h.shape[1]
|
||||
if T > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.blocks)
|
||||
@@ -251,11 +249,3 @@ class Model(nn.Module):
|
||||
experts = [(s, sv.T) for s, sv in experts]
|
||||
new_weights.update(experts)
|
||||
return new_weights
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.d_model // self.args.n_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.attn_config["kv_n_heads"]
|
||||
|
258
llms/mlx_lm/models/deepseek.py
Normal file
258
llms/mlx_lm/models/deepseek.py
Normal file
@@ -0,0 +1,258 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str = "deepseek"
|
||||
vocab_size: int = 102400
|
||||
hidden_size: int = 4096
|
||||
intermediate_size: int = 11008
|
||||
moe_intermediate_size: int = 1407
|
||||
num_hidden_layers: int = 30
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 32
|
||||
n_shared_experts: Optional[int] = None
|
||||
n_routed_experts: Optional[int] = None
|
||||
num_experts_per_tok: Optional[int] = None
|
||||
moe_layer_freq: int = 1
|
||||
first_k_dense_replace: int = 0
|
||||
max_position_embeddings: int = 2048
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 10000.0
|
||||
rope_scaling: Optional[Dict] = None
|
||||
attention_bias: bool = False
|
||||
|
||||
|
||||
class DeepseekAttention(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.num_kv_heads = config.num_key_value_heads
|
||||
self.head_dim = config.hidden_size // config.num_attention_heads
|
||||
self.scale = self.head_dim**-0.5
|
||||
|
||||
attention_bias = getattr(config, "attention_bias", False)
|
||||
|
||||
self.q_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
config.num_attention_heads * self.head_dim,
|
||||
bias=attention_bias,
|
||||
)
|
||||
self.k_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
config.num_key_value_heads * self.head_dim,
|
||||
bias=attention_bias,
|
||||
)
|
||||
self.v_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
config.num_key_value_heads * self.head_dim,
|
||||
bias=attention_bias,
|
||||
)
|
||||
self.o_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
config.num_attention_heads * self.head_dim,
|
||||
bias=attention_bias,
|
||||
)
|
||||
|
||||
rope_scale = 1.0
|
||||
if config.rope_scaling and config.rope_scaling["type"] == "linear":
|
||||
assert isinstance(config.rope_scaling["factor"], float)
|
||||
rope_scale = 1 / config.rope_scaling["factor"]
|
||||
self.rope = nn.RoPE(
|
||||
self.head_dim,
|
||||
base=config.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, _ = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose(
|
||||
0, 2, 1, 3
|
||||
)
|
||||
keys = keys.reshape(B, L, self.num_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.num_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class DeepseekMLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config: ModelArgs,
|
||||
hidden_size: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = hidden_size or config.hidden_size
|
||||
self.intermediate_size = intermediate_size or config.intermediate_size
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = nn.silu
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class MoEGate(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
|
||||
|
||||
def __call__(self, x):
|
||||
gates = x @ self.weight.T
|
||||
scores = mx.softmax(gates, axis=-1, precise=True)
|
||||
k = self.top_k
|
||||
inds = mx.stop_gradient(mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k])
|
||||
scores = mx.take_along_axis(scores, inds, axis=-1)
|
||||
return inds, scores
|
||||
|
||||
|
||||
class DeepseekMoE(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.switch_mlp = SwitchGLU(
|
||||
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
|
||||
)
|
||||
|
||||
self.gate = MoEGate(config)
|
||||
if config.n_shared_experts is not None:
|
||||
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
||||
self.shared_experts = DeepseekMLP(
|
||||
config=config, intermediate_size=intermediate_size
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
inds, scores = self.gate(x)
|
||||
y = self.switch_mlp(x, inds)
|
||||
y = (y * scores[..., None]).sum(axis=-2)
|
||||
if self.config.n_shared_experts is not None:
|
||||
y = y + self.shared_experts(x)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class DeepseekDecoderLayer(nn.Module):
|
||||
def __init__(self, config: ModelArgs, layer_idx: int):
|
||||
super().__init__()
|
||||
self.self_attn = DeepseekAttention(config)
|
||||
self.mlp = (
|
||||
DeepseekMoE(config)
|
||||
if (
|
||||
config.n_routed_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0
|
||||
)
|
||||
else DeepseekMLP(config)
|
||||
)
|
||||
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = nn.RMSNorm(
|
||||
config.hidden_size, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
|
||||
class DeepseekModel(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = [
|
||||
DeepseekDecoderLayer(config, idx) for idx in range(config.num_hidden_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
h = self.embed_tokens(x)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = config
|
||||
self.model_type = config.model_type
|
||||
self.model = DeepseekModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache: Optional[Any] = None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
def sanitize(self, weights):
|
||||
for l in range(self.args.num_hidden_layers):
|
||||
prefix = f"model.layers.{l}"
|
||||
for m in ["gate_proj", "down_proj", "up_proj"]:
|
||||
for k in ["weight", "scales", "biases"]:
|
||||
if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
|
||||
to_join = [
|
||||
weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
|
||||
for e in range(self.args.n_routed_experts)
|
||||
]
|
||||
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
417
llms/mlx_lm/models/deepseek_v2.py
Normal file
417
llms/mlx_lm/models/deepseek_v2.py
Normal file
@@ -0,0 +1,417 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str = "deepseek_v2"
|
||||
vocab_size: int = 102400
|
||||
hidden_size: int = 4096
|
||||
intermediate_size: int = 11008
|
||||
moe_intermediate_size: int = 1407
|
||||
num_hidden_layers: int = 30
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 32
|
||||
n_shared_experts: Optional[int] = None
|
||||
n_routed_experts: Optional[int] = None
|
||||
routed_scaling_factor: float = 1.0
|
||||
kv_lora_rank: int = 512
|
||||
q_lora_rank: int = 1536
|
||||
qk_rope_head_dim: int = 64
|
||||
v_head_dim: int = 128
|
||||
qk_nope_head_dim: int = 128
|
||||
topk_method: str = "gready"
|
||||
n_group: Optional[int] = None
|
||||
topk_group: Optional[int] = None
|
||||
num_experts_per_tok: Optional[int] = None
|
||||
moe_layer_freq: int = 1
|
||||
first_k_dense_replace: int = 0
|
||||
max_position_embeddings: int = 2048
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_theta: float = 10000.0
|
||||
rope_scaling: Dict = None
|
||||
attention_bias: bool = False
|
||||
|
||||
|
||||
def yarn_find_correction_dim(
|
||||
num_rotations, dim, base=10000, max_position_embeddings=2048
|
||||
):
|
||||
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
||||
2 * math.log(base)
|
||||
)
|
||||
|
||||
|
||||
def yarn_find_correction_range(
|
||||
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
||||
):
|
||||
low = math.floor(
|
||||
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
||||
)
|
||||
high = math.ceil(
|
||||
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
||||
)
|
||||
return max(low, 0), min(high, dim - 1)
|
||||
|
||||
|
||||
def yarn_get_mscale(scale=1, mscale=1):
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * mscale * math.log(scale) + 1.0
|
||||
|
||||
|
||||
def yarn_linear_ramp_mask(min_val, max_val, dim):
|
||||
if min_val == max_val:
|
||||
max_val += 0.001 # Prevent singularity
|
||||
|
||||
linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
|
||||
return mx.clip(linear_func, 0, 1)
|
||||
|
||||
|
||||
class DeepseekV2YarnRotaryEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
max_position_embeddings=2048,
|
||||
base=10000,
|
||||
scaling_factor=1.0,
|
||||
original_max_position_embeddings=4096,
|
||||
beta_fast=32,
|
||||
beta_slow=1,
|
||||
mscale=1,
|
||||
mscale_all_dim=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
|
||||
scaling_factor, mscale_all_dim
|
||||
)
|
||||
freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
|
||||
freq_inter = scaling_factor * base ** (
|
||||
mx.arange(0, dim, 2, dtype=mx.float32) / dim
|
||||
)
|
||||
low, high = yarn_find_correction_range(
|
||||
beta_fast,
|
||||
beta_slow,
|
||||
dim,
|
||||
base,
|
||||
original_max_position_embeddings,
|
||||
)
|
||||
freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
|
||||
self._freqs = (freq_inter * freq_extra) / (
|
||||
freq_inter * freq_mask + freq_extra * (1 - freq_mask)
|
||||
)
|
||||
|
||||
def __call__(self, x, offset=0):
|
||||
if self.mscale != 1.0:
|
||||
x = self.mscale * x
|
||||
return mx.fast.rope(
|
||||
x,
|
||||
x.shape[-1],
|
||||
traditional=True,
|
||||
base=None,
|
||||
scale=1.0,
|
||||
offset=offset,
|
||||
freqs=self._freqs,
|
||||
)
|
||||
|
||||
|
||||
class DeepseekV2Attention(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.rope_theta = config.rope_theta
|
||||
self.q_lora_rank = config.q_lora_rank
|
||||
self.qk_rope_head_dim = config.qk_rope_head_dim
|
||||
self.kv_lora_rank = config.kv_lora_rank
|
||||
self.v_head_dim = config.v_head_dim
|
||||
self.qk_nope_head_dim = config.qk_nope_head_dim
|
||||
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
||||
|
||||
self.scale = self.q_head_dim**-0.5
|
||||
|
||||
if self.q_lora_rank is None:
|
||||
self.q_proj = nn.Linear(
|
||||
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
||||
)
|
||||
else:
|
||||
self.q_a_proj = nn.Linear(
|
||||
self.hidden_size, self.q_lora_rank, bias=config.attention_bias
|
||||
)
|
||||
self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank)
|
||||
self.q_b_proj = nn.Linear(
|
||||
self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
||||
)
|
||||
|
||||
self.kv_a_proj_with_mqa = nn.Linear(
|
||||
self.hidden_size,
|
||||
self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank)
|
||||
self.kv_b_proj = nn.Linear(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads
|
||||
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.o_proj = nn.Linear(
|
||||
self.num_heads * self.v_head_dim,
|
||||
self.hidden_size,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
|
||||
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
||||
scaling_factor = self.config.rope_scaling["factor"]
|
||||
if mscale_all_dim:
|
||||
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
||||
self.scale = self.scale * mscale * mscale
|
||||
|
||||
rope_kwargs = {
|
||||
key: self.config.rope_scaling[key]
|
||||
for key in [
|
||||
"original_max_position_embeddings",
|
||||
"beta_fast",
|
||||
"beta_slow",
|
||||
"mscale",
|
||||
"mscale_all_dim",
|
||||
]
|
||||
if key in self.config.rope_scaling
|
||||
}
|
||||
self.rope = DeepseekV2YarnRotaryEmbedding(
|
||||
dim=self.qk_rope_head_dim,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
scaling_factor=scaling_factor,
|
||||
base=self.rope_theta,
|
||||
**rope_kwargs,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
if self.q_lora_rank is None:
|
||||
q = self.q_proj(x)
|
||||
else:
|
||||
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
|
||||
|
||||
q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
|
||||
q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
|
||||
compressed_kv = self.kv_a_proj_with_mqa(x)
|
||||
compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
|
||||
k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
|
||||
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
||||
kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
|
||||
|
||||
if cache is not None:
|
||||
q_pe = self.rope(q_pe, cache.offset)
|
||||
k_pe = self.rope(k_pe, cache.offset)
|
||||
k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
|
||||
keys, values = cache.update_and_fetch(
|
||||
mx.concatenate([k_nope, k_pe], axis=-1), values
|
||||
)
|
||||
else:
|
||||
q_pe = self.rope(q_pe)
|
||||
k_pe = self.rope(k_pe)
|
||||
k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
|
||||
keys = mx.concatenate([k_nope, k_pe], axis=-1)
|
||||
|
||||
queries = mx.concatenate([q_nope, q_pe], axis=-1)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class DeepseekV2MLP(nn.Module):
|
||||
def __init__(
|
||||
self, config: ModelArgs, hidden_size: int = None, intermediate_size: int = None
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
||||
self.intermediate_size = (
|
||||
config.intermediate_size if intermediate_size is None else intermediate_size
|
||||
)
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
|
||||
def __call__(self, x):
|
||||
down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||
return down_proj
|
||||
|
||||
|
||||
class MoEGate(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
self.topk_method = config.topk_method
|
||||
self.n_group = config.n_group
|
||||
self.topk_group = config.topk_group
|
||||
self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
|
||||
|
||||
def __call__(self, x):
|
||||
gates = x @ self.weight.T
|
||||
|
||||
scores = mx.softmax(gates, axis=-1, precise=True)
|
||||
|
||||
if self.topk_method == "group_limited_greedy":
|
||||
bsz, seq_len = x.shape[:2]
|
||||
scores = scores.reshape(bsz, seq_len, self.n_group, -1)
|
||||
group_scores = scores.max(axis=-1)
|
||||
k = self.n_group - self.topk_group
|
||||
group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-1)[..., :k]
|
||||
batch_idx = mx.expand_dims(mx.arange(bsz), (1, 2))
|
||||
seq_idx = mx.expand_dims(mx.arange(seq_len), (0, 2))
|
||||
scores[batch_idx, seq_idx, group_idx] = 0.0
|
||||
scores = scores.reshape(bsz, seq_len, -1)
|
||||
|
||||
k = self.top_k
|
||||
inds = mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k]
|
||||
scores = mx.take_along_axis(scores, inds, axis=-1)
|
||||
scores = scores * self.routed_scaling_factor
|
||||
|
||||
return inds, scores
|
||||
|
||||
|
||||
class DeepseekV2MoE(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.num_experts_per_tok = config.num_experts_per_tok
|
||||
self.switch_mlp = SwitchGLU(
|
||||
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
|
||||
)
|
||||
|
||||
self.gate = MoEGate(config)
|
||||
if config.n_shared_experts is not None:
|
||||
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
||||
self.shared_experts = DeepseekV2MLP(
|
||||
config=config, intermediate_size=intermediate_size
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
inds, scores = self.gate(x)
|
||||
y = self.switch_mlp(x, inds)
|
||||
y = (y * scores[..., None]).sum(axis=-2)
|
||||
if self.config.n_shared_experts is not None:
|
||||
y = y + self.shared_experts(x)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class DeepseekV2DecoderLayer(nn.Module):
|
||||
def __init__(self, config: ModelArgs, layer_idx: int):
|
||||
super().__init__()
|
||||
self.self_attn = DeepseekV2Attention(config)
|
||||
self.mlp = (
|
||||
DeepseekV2MoE(config)
|
||||
if (
|
||||
config.n_routed_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0
|
||||
)
|
||||
else DeepseekV2MLP(config)
|
||||
)
|
||||
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = nn.RMSNorm(
|
||||
config.hidden_size, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
|
||||
class DeepseekV2Model(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = [
|
||||
DeepseekV2DecoderLayer(config, idx)
|
||||
for idx in range(config.num_hidden_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
h = self.embed_tokens(x)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, config: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = config
|
||||
self.model_type = config.model_type
|
||||
self.model = DeepseekV2Model(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache: Optional[Any] = None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
def sanitize(self, weights):
|
||||
for l in range(self.args.num_hidden_layers):
|
||||
prefix = f"model.layers.{l}"
|
||||
for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
|
||||
for k in ["weight", "scales", "biases"]:
|
||||
if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
|
||||
to_join = [
|
||||
weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
|
||||
for e in range(self.args.n_routed_experts)
|
||||
]
|
||||
weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -58,7 +60,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -77,8 +79,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
@@ -111,7 +113,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -141,10 +143,7 @@ class GemmaModel(nn.Module):
|
||||
h = self.embed_tokens(inputs)
|
||||
h = h * (self.args.hidden_size**0.5)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -174,11 +173,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.head_dim
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -20,6 +22,9 @@ class ModelArgs(BaseModelArgs):
|
||||
num_key_value_heads: int
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
attn_logit_softcapping: float = 50.0
|
||||
final_logit_softcapping: float = 30.0
|
||||
query_pre_attn_scalar: float = 144.0
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
@@ -39,15 +44,16 @@ class Attention(nn.Module):
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
self.repeats = n_heads // n_kv_heads
|
||||
self.head_dim = head_dim = args.head_dim
|
||||
|
||||
self.scale = head_dim**-0.5
|
||||
self.scale = 1.0 / (args.query_pre_attn_scalar**0.5)
|
||||
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||
|
||||
self.attn_logit_softcapping = args.attn_logit_softcapping
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
@@ -58,13 +64,10 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
@@ -77,10 +80,25 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
queries = queries * self.scale
|
||||
|
||||
if self.repeats > 1:
|
||||
queries = queries.reshape(
|
||||
B, self.n_kv_heads, self.repeats, L, self.head_dim
|
||||
)
|
||||
keys = mx.expand_dims(keys, 2)
|
||||
values = mx.expand_dims(values, 2)
|
||||
|
||||
scores = queries @ keys.swapaxes(-1, -2)
|
||||
scores = mx.tanh(scores / self.attn_logit_softcapping)
|
||||
scores *= self.attn_logit_softcapping
|
||||
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = mx.softmax(scores, precise=True, axis=-1)
|
||||
output = scores @ values
|
||||
if self.repeats > 1:
|
||||
output = output.reshape(B, self.n_heads, L, self.head_dim)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
@@ -93,7 +111,7 @@ class MLP(nn.Module):
|
||||
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.down_proj(nn.gelu(self.gate_proj(x)) * self.up_proj(x))
|
||||
return self.down_proj(nn.gelu_approx(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
@@ -117,7 +135,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + self.post_attention_layernorm(r)
|
||||
@@ -147,10 +165,7 @@ class GemmaModel(nn.Module):
|
||||
h = self.embed_tokens(inputs)
|
||||
h = h * (self.args.hidden_size**0.5)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -165,6 +180,7 @@ class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.model_type = args.model_type
|
||||
self.final_logit_softcapping = args.final_logit_softcapping
|
||||
self.model = GemmaModel(args)
|
||||
self.args = args
|
||||
|
||||
@@ -175,16 +191,10 @@ class Model(nn.Module):
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
out = self.model.embed_tokens.as_linear(out)
|
||||
out = mx.tanh(out / self.final_logit_softcapping)
|
||||
out = out * self.final_logit_softcapping
|
||||
return out
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.head_dim
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_additive_causal_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -44,7 +46,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -59,8 +61,8 @@ class Attention(nn.Module):
|
||||
if cache is not None:
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
@@ -98,7 +100,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.attn(self.ln_1(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -136,10 +138,7 @@ class GPT2Model(nn.Module):
|
||||
position_ids = mx.array(np.arange(L))
|
||||
hidden_states += self.wpe(position_ids)
|
||||
|
||||
mask = create_additive_causal_mask(
|
||||
hidden_states.shape[1], cache[0].offset if cache is not None else 0
|
||||
)
|
||||
mask = mask.astype(hidden_states.dtype)
|
||||
mask = create_attention_mask(hidden_states, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
@@ -197,11 +196,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.h
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.n_embd // self.args.n_head
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_additive_causal_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -55,7 +57,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -72,8 +74,8 @@ class Attention(nn.Module):
|
||||
if cache is not None:
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.c_proj(output)
|
||||
@@ -112,7 +114,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.attn(self.ln_1(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -147,10 +149,7 @@ class GPTBigCodeModel(nn.Module):
|
||||
position_ids = mx.array(np.arange(L))
|
||||
hidden_states += self.wpe(position_ids)
|
||||
|
||||
mask = create_additive_causal_mask(
|
||||
hidden_states.shape[1], cache[0].offset if cache is not None else 0
|
||||
)
|
||||
mask = mask.astype(hidden_states.dtype)
|
||||
mask = create_attention_mask(hidden_states, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
@@ -185,11 +184,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.transformer.h
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.n_embd // self.args.n_head
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
216
llms/mlx_lm/models/gpt_neox.py
Normal file
216
llms/mlx_lm/models/gpt_neox.py
Normal file
@@ -0,0 +1,216 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
# Based on the transformers implementation at:
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
max_position_embeddings: int
|
||||
hidden_size: int
|
||||
num_attention_heads: int
|
||||
num_hidden_layers: int
|
||||
layer_norm_eps: float
|
||||
vocab_size: int
|
||||
rotary_emb_base: int
|
||||
rotary_pct: float
|
||||
num_key_value_heads: int = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
self.num_key_value_heads = self.num_attention_heads
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
assert (
|
||||
args.hidden_size % args.num_attention_heads == 0
|
||||
), "hidden_size must be divisible by num_attention_heads"
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_attention_heads = args.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_attention_heads
|
||||
|
||||
self.rope = nn.RoPE(
|
||||
dims=int(self.head_dim * args.rotary_pct),
|
||||
traditional=False,
|
||||
base=args.rotary_emb_base,
|
||||
)
|
||||
|
||||
self.scale = self.head_dim**-0.5
|
||||
|
||||
self.query_key_value = nn.Linear(
|
||||
self.hidden_size, 3 * self.hidden_size, bias=True
|
||||
)
|
||||
self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
qkv = self.query_key_value(x)
|
||||
|
||||
new_qkv_shape = qkv.shape[:-1] + (self.num_attention_heads, 3 * self.head_dim)
|
||||
qkv = qkv.reshape(*new_qkv_shape)
|
||||
|
||||
queries, keys, values = [x.transpose(0, 2, 1, 3) for x in qkv.split(3, -1)]
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.dense(output)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size)
|
||||
self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
# gelu_approx corresponds to FastGELUActivation in transformers.
|
||||
return self.dense_4h_to_h(nn.gelu_approx(self.dense_h_to_4h(x)))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.layer_norm_eps = args.layer_norm_eps
|
||||
self.attention = Attention(args)
|
||||
self.mlp = MLP(args)
|
||||
self.input_layernorm = nn.LayerNorm(
|
||||
self.hidden_size,
|
||||
eps=self.layer_norm_eps,
|
||||
)
|
||||
self.post_attention_layernorm = nn.LayerNorm(
|
||||
self.hidden_size, eps=self.layer_norm_eps
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
residual = x
|
||||
# NeoX runs attention and feedforward network in parallel.
|
||||
attn = self.attention(self.input_layernorm(x), mask, cache)
|
||||
ffn = self.mlp(self.post_attention_layernorm(x))
|
||||
out = attn + ffn + residual
|
||||
return out
|
||||
|
||||
|
||||
class GPTNeoXModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.hidden_size = args.hidden_size
|
||||
self.vocab_size = args.vocab_size
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
self.layer_norm_eps = args.layer_norm_eps
|
||||
assert self.vocab_size > 0
|
||||
self.embed_in = nn.Embedding(self.vocab_size, self.hidden_size)
|
||||
self.embed_out = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
self.h = [TransformerBlock(args=args) for _ in range(self.num_hidden_layers)]
|
||||
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
_, L = inputs.shape
|
||||
|
||||
hidden_states = self.embed_in(inputs)
|
||||
|
||||
mask = create_attention_mask(hidden_states, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
|
||||
for layer, c in zip(self.h, cache):
|
||||
hidden_states = layer(hidden_states, mask, cache=c)
|
||||
|
||||
out = self.final_layer_norm(hidden_states)
|
||||
out = self.embed_out(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.model = GPTNeoXModel(args)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
return out
|
||||
|
||||
def sanitize(self, weights):
|
||||
new_weights = {}
|
||||
|
||||
for w_key, w_value in weights.items():
|
||||
# Created through register_buffer in Pytorch, not needed here.
|
||||
ignore_suffixes = [
|
||||
".attention.bias",
|
||||
".attention.masked_bias",
|
||||
".attention.rotary_emb.inv_freq",
|
||||
]
|
||||
|
||||
skip_weight = False
|
||||
for ignored_suffix in ignore_suffixes:
|
||||
if w_key.endswith(ignored_suffix):
|
||||
skip_weight = True
|
||||
break
|
||||
|
||||
if skip_weight:
|
||||
continue
|
||||
|
||||
if not w_key.startswith("model."):
|
||||
w_key = f"model.{w_key}"
|
||||
|
||||
w_key = w_key.replace(".gpt_neox.layers.", ".h.")
|
||||
w_key = w_key.replace(".gpt_neox.", ".")
|
||||
|
||||
new_weights[w_key] = w_value
|
||||
|
||||
return new_weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.h
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -17,6 +19,7 @@ class ModelArgs(BaseModelArgs):
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
bias: bool = True
|
||||
max_position_embeddings: int = 32768
|
||||
num_key_value_heads: int = None
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
@@ -32,8 +35,50 @@ class ModelArgs(BaseModelArgs):
|
||||
if not all(key in self.rope_scaling for key in required_keys):
|
||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||
|
||||
if self.rope_scaling["type"] != "linear":
|
||||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||
if self.rope_scaling["type"] not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
"rope_scaling 'type' currently only supports 'linear' or 'dynamic"
|
||||
)
|
||||
|
||||
|
||||
class DynamicNTKScalingRoPE(nn.Module):
|
||||
"""Implements the rotary positional encoding with Dynamic NTK scaling."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
max_position_embeddings: int = 2048,
|
||||
traditional: bool = False,
|
||||
base: float = 10000,
|
||||
scale: float = 1.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.original_base = base
|
||||
self.dims = dims
|
||||
self.traditional = traditional
|
||||
self.scale = scale
|
||||
|
||||
def extra_repr(self):
|
||||
return f"{self.dims}, traditional={self.traditional}, max_position_embeddings={self.max_position_embeddings}, scaling_factor={self.scaling_factor}"
|
||||
|
||||
def __call__(self, x, offset: int = 0):
|
||||
seq_len = x.shape[1] + offset
|
||||
if seq_len > self.max_position_embeddings:
|
||||
base = self.original_base * (
|
||||
(self.scale * seq_len / self.max_position_embeddings) - (self.scale - 1)
|
||||
) ** (self.dims / (self.dims - 2))
|
||||
else:
|
||||
base = self.original_base
|
||||
|
||||
return mx.fast.rope(
|
||||
x,
|
||||
self.dims,
|
||||
traditional=self.traditional,
|
||||
base=base,
|
||||
scale=self.scale,
|
||||
offset=offset,
|
||||
)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
@@ -56,10 +101,12 @@ class Attention(nn.Module):
|
||||
rope_scale = (
|
||||
1 / args.rope_scaling["factor"]
|
||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||
else 1
|
||||
else 2.0
|
||||
)
|
||||
self.rope = nn.RoPE(
|
||||
|
||||
self.rope = DynamicNTKScalingRoPE(
|
||||
head_dim,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
@@ -69,7 +116,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -94,8 +141,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.wo(output)
|
||||
@@ -124,7 +171,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.attention(self.attention_norm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -150,10 +197,7 @@ class InternLM2Model(nn.Module):
|
||||
):
|
||||
h = self.tok_embeddings(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -185,14 +229,10 @@ class Model(nn.Module):
|
||||
out = self.output(out)
|
||||
return out
|
||||
|
||||
def sanitize(self, weights):
|
||||
# Remove unused precomputed rotary freqs
|
||||
return {k: v for k, v in weights.items() if "attention.rope.inv_freq" not in k}
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, KVCache, create_additive_causal_mask
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -16,6 +18,8 @@ class ModelArgs(BaseModelArgs):
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
head_dim: Optional[int] = None
|
||||
max_position_embeddings: Optional[int] = None
|
||||
num_key_value_heads: Optional[int] = None
|
||||
attention_bias: bool = False
|
||||
mlp_bias: bool = False
|
||||
@@ -29,12 +33,115 @@ class ModelArgs(BaseModelArgs):
|
||||
self.num_key_value_heads = self.num_attention_heads
|
||||
|
||||
if self.rope_scaling:
|
||||
required_keys = {"factor", "type"}
|
||||
if not all(key in self.rope_scaling for key in required_keys):
|
||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||
if not "factor" in self.rope_scaling:
|
||||
raise ValueError(f"rope_scaling must contain 'factor'")
|
||||
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
|
||||
"rope_type"
|
||||
)
|
||||
if rope_type is None:
|
||||
raise ValueError(
|
||||
f"rope_scaling must contain either 'type' or 'rope_type'"
|
||||
)
|
||||
if rope_type not in ["linear", "dynamic", "llama3"]:
|
||||
raise ValueError(
|
||||
"rope_scaling 'type' currently only supports 'linear', 'dynamic' or 'llama3'"
|
||||
)
|
||||
|
||||
if self.rope_scaling["type"] != "linear":
|
||||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||
|
||||
class DynamicNTKScalingRoPE(nn.Module):
|
||||
"""Implements the rotary positional encoding with Dynamic NTK scaling and Llama 3 RoPE."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
max_position_embeddings: int = 2048,
|
||||
traditional: bool = False,
|
||||
base: float = 10000,
|
||||
scale: float = 1.0,
|
||||
rope_type: str = "default",
|
||||
rope_scaling: dict = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dims = dims
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.traditional = traditional
|
||||
self.scale = scale
|
||||
self.rope_type = rope_type
|
||||
self.rope_scaling = rope_scaling
|
||||
self.base = base
|
||||
self.compute_freqs()
|
||||
|
||||
def compute_freqs(self):
|
||||
if self.rope_type != "llama3":
|
||||
self._freqs = None
|
||||
return
|
||||
factor = self.rope_scaling["factor"]
|
||||
low_freq_factor = self.rope_scaling.get("low_freq_factor", 1.0)
|
||||
high_freq_factor = self.rope_scaling.get("high_freq_factor", 4.0)
|
||||
old_context_len = self.rope_scaling.get(
|
||||
"original_max_position_embeddings",
|
||||
8192,
|
||||
)
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
|
||||
freqs = self.base ** (mx.arange(0, self.dims, 2) / self.dims)
|
||||
wavelens = 2 * mx.pi * freqs
|
||||
|
||||
freqs = mx.where(wavelens > low_freq_wavelen, freqs * factor, freqs)
|
||||
is_medium_freq = (wavelens > high_freq_wavelen) & (wavelens < low_freq_wavelen)
|
||||
smooth_factors = (old_context_len / wavelens - low_freq_factor) / (
|
||||
high_freq_factor - low_freq_factor
|
||||
)
|
||||
smooth_freqs = freqs / ((1 - smooth_factors) / factor + smooth_factors)
|
||||
self._freqs = mx.where(is_medium_freq, smooth_freqs, freqs)
|
||||
self.base = None
|
||||
|
||||
def extra_repr(self):
|
||||
return (
|
||||
f"{self.dims}, traditional={self.traditional}, "
|
||||
f"max_position_embeddings={self.max_position_embeddings}, "
|
||||
f"scaling_factor={self.scale}, rope_type={self.rope_type}"
|
||||
)
|
||||
|
||||
def __call__(self, x, offset: int = 0):
|
||||
return mx.fast.rope(
|
||||
x,
|
||||
self.dims,
|
||||
traditional=self.traditional,
|
||||
base=self.base,
|
||||
scale=self.scale,
|
||||
offset=offset,
|
||||
freqs=self._freqs,
|
||||
)
|
||||
|
||||
|
||||
def initialize_rope(args: ModelArgs):
|
||||
head_dim = args.head_dim or args.hidden_size // args.num_attention_heads
|
||||
|
||||
rope_scaling = args.rope_scaling
|
||||
rope_type = "default"
|
||||
rope_scale = 1.0
|
||||
|
||||
if rope_scaling is not None:
|
||||
rope_type = (
|
||||
rope_scaling.get("type") or rope_scaling.get("rope_type") or "default"
|
||||
)
|
||||
if rope_type == "linear":
|
||||
rope_scale = 1 / rope_scaling["factor"]
|
||||
elif rope_type == "llama3":
|
||||
rope_scale = 1.0 # The scaling is handled internally for llama3
|
||||
|
||||
return DynamicNTKScalingRoPE(
|
||||
dims=head_dim,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
rope_type=rope_type,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
@@ -45,7 +152,8 @@ class Attention(nn.Module):
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
|
||||
|
||||
self.scale = head_dim**-0.5
|
||||
if hasattr(args, "attention_bias"):
|
||||
attention_bias = args.attention_bias
|
||||
@@ -57,23 +165,13 @@ class Attention(nn.Module):
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
|
||||
|
||||
rope_scale = (
|
||||
1 / args.rope_scaling["factor"]
|
||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||
else 1
|
||||
)
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
self.rope = initialize_rope(args)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -92,9 +190,10 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
@@ -135,7 +234,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -164,12 +263,7 @@ class LlamaModel(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = create_additive_causal_mask(
|
||||
h.shape[1], cache[0].offset if cache is not None else 0
|
||||
)
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -210,11 +304,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
217
llms/mlx_lm/models/mamba.py
Normal file
217
llms/mlx_lm/models/mamba.py
Normal file
@@ -0,0 +1,217 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .cache import MambaCache
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
vocab_size: int
|
||||
hidden_size: int
|
||||
intermediate_size: int
|
||||
state_size: int
|
||||
num_hidden_layers: int
|
||||
conv_kernel: int
|
||||
use_bias: bool
|
||||
use_conv_bias: bool
|
||||
time_step_rank: int
|
||||
tie_word_embeddings: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "hidden_size") and hasattr(self, "d_model"):
|
||||
self.hidden_size = self.d_model
|
||||
if not hasattr(self, "intermediate_size") and hasattr(self, "d_inner"):
|
||||
self.intermediate_size = self.d_inner
|
||||
if not hasattr(self, "state_size") and hasattr(self, "d_state"):
|
||||
self.state_size = self.d_state
|
||||
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layer"):
|
||||
self.num_hidden_layers = self.n_layer
|
||||
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layers"):
|
||||
self.num_hidden_layers = self.n_layers
|
||||
if not hasattr(self, "conv_kernel") and hasattr(self, "d_conv"):
|
||||
self.conv_kernel = self.d_conv
|
||||
if not hasattr(self, "use_bias") and hasattr(self, "bias"):
|
||||
self.use_bias = self.bias
|
||||
if not hasattr(self, "use_conv_bias") and hasattr(self, "conv_bias"):
|
||||
self.use_conv_bias = self.conv_bias
|
||||
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, channels, kernel_size, bias=True, padding=0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.weight = mx.random.normal((self.channels, kernel_size, 1))
|
||||
self.bias = mx.zeros((channels,)) if bias else None
|
||||
|
||||
def __call__(self, x, cache=None):
|
||||
B, L, C = x.shape
|
||||
groups, K, _ = self.weight.shape
|
||||
|
||||
if cache is not None:
|
||||
x = mx.concatenate([cache, x], axis=1)
|
||||
else:
|
||||
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
||||
|
||||
y = mx.conv_general(x, self.weight, groups=groups)
|
||||
|
||||
if self.bias is not None:
|
||||
y = y + self.bias
|
||||
|
||||
return y, x[:, -K + 1 :, :]
|
||||
|
||||
|
||||
class MambaBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.ssm_state_size = args.state_size
|
||||
self.conv_kernel_size = args.conv_kernel
|
||||
self.intermediate_size = args.intermediate_size
|
||||
self.time_step_rank = int(args.time_step_rank)
|
||||
self.use_conv_bias = args.use_conv_bias
|
||||
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size, self.intermediate_size * 2, bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv1d = DepthWiseConv1d(
|
||||
channels=self.intermediate_size,
|
||||
kernel_size=self.conv_kernel_size,
|
||||
bias=self.use_conv_bias,
|
||||
padding=self.conv_kernel_size - 1,
|
||||
)
|
||||
|
||||
self.x_proj = nn.Linear(
|
||||
self.intermediate_size,
|
||||
self.time_step_rank + 2 * self.ssm_state_size,
|
||||
bias=False,
|
||||
)
|
||||
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
||||
|
||||
A = mx.repeat(
|
||||
mx.arange(1.0, self.ssm_state_size + 1.0).reshape([1, self.ssm_state_size]),
|
||||
repeats=self.intermediate_size,
|
||||
axis=0,
|
||||
)
|
||||
self.A_log = mx.log(A)
|
||||
self.D = mx.ones([self.intermediate_size])
|
||||
|
||||
self.out_proj = nn.Linear(
|
||||
self.intermediate_size, self.hidden_size, bias=args.use_bias
|
||||
)
|
||||
|
||||
def ssm_step(self, x, state=None):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
deltaBC = self.x_proj(x)
|
||||
delta, B, C = mx.split(
|
||||
deltaBC,
|
||||
indices_or_sections=[
|
||||
self.time_step_rank,
|
||||
self.time_step_rank + self.ssm_state_size,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
delta = nn.softplus(self.dt_proj(delta))
|
||||
new_state = mx.expand_dims(delta * x, -1) * mx.expand_dims(B, 1)
|
||||
if state is not None:
|
||||
new_state += state * mx.exp(mx.expand_dims(delta, -1) * A)
|
||||
y = (new_state @ mx.expand_dims(C, -1)).squeeze(2)
|
||||
y = y + D * x
|
||||
return y, new_state
|
||||
|
||||
def __call__(self, x, cache):
|
||||
B, T, D = x.shape
|
||||
if cache is None:
|
||||
cache = [None, None]
|
||||
|
||||
outputs = []
|
||||
for t in range(T):
|
||||
xt = x[:, t, :]
|
||||
xz = self.in_proj(xt)
|
||||
x_t, z_t = xz.split(indices_or_sections=2, axis=1)
|
||||
conv_out, cache[0] = self.conv1d(mx.expand_dims(x_t, 1), cache[0])
|
||||
x_t = conv_out.squeeze(1)
|
||||
x_t = nn.silu(x_t)
|
||||
y_t, cache[1] = self.ssm_step(x_t, cache[1])
|
||||
z_t = nn.silu(z_t)
|
||||
output_t = y_t * z_t
|
||||
output_t = self.out_proj(output_t)
|
||||
outputs.append(output_t)
|
||||
output = mx.stack(outputs, axis=1)
|
||||
return output
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.mixer = MambaBlock(args)
|
||||
self.norm = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
return self.mixer(self.norm(x), cache) + x
|
||||
|
||||
|
||||
class Mamba(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size)
|
||||
|
||||
def __call__(self, x: mx.array, cache):
|
||||
x = self.embeddings(x)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, c)
|
||||
return self.norm_f(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.backbone = Mamba(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs: mx.array, cache=None):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
|
||||
return logits
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.shape[-1] != 1:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
def make_cache(self):
|
||||
return [MambaCache() for _ in range(len(self.layers))]
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -83,7 +85,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
):
|
||||
B, L, _ = x.shape
|
||||
|
||||
@@ -103,8 +105,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
attn_output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
attn_output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
@@ -133,7 +135,7 @@ class DecoderLayer(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r * (self.scale_depth / np.sqrt(self.num_hidden_layers))
|
||||
@@ -160,10 +162,7 @@ class MiniCPMModel(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs) * self.args.scale_emb
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -206,11 +205,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@@ -64,7 +66,7 @@ class MixtralAttention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -85,8 +87,8 @@ class MixtralAttention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
@@ -136,7 +138,7 @@ class MixtralDecoderLayer(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -164,11 +166,7 @@ class MixtralModel(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
T = h.shape[1]
|
||||
if T > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -217,11 +215,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
217
llms/mlx_lm/models/nemotron.py
Normal file
217
llms/mlx_lm/models/nemotron.py
Normal file
@@ -0,0 +1,217 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
hidden_size: int
|
||||
hidden_act: str
|
||||
num_hidden_layers: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int
|
||||
head_dim: Optional[int] = None
|
||||
max_position_embeddings: Optional[int] = None
|
||||
attention_bias: bool = False
|
||||
mlp_bias: bool = False
|
||||
partial_rotary_factor: float = 0.5
|
||||
rope_theta: float = 10000.0
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
tie_word_embeddings: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.rope_scaling:
|
||||
if not "factor" in self.rope_scaling:
|
||||
raise ValueError(f"rope_scaling must contain 'factor'")
|
||||
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
|
||||
"rope_type"
|
||||
)
|
||||
if rope_type is None:
|
||||
raise ValueError(
|
||||
f"rope_scaling must contain either 'type' or 'rope_type'"
|
||||
)
|
||||
if rope_type not in ["linear"]:
|
||||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||
|
||||
|
||||
@partial(mx.compile, shapeless=True)
|
||||
def relu_squared(x):
|
||||
return nn.relu(x).square()
|
||||
|
||||
|
||||
class NemotronLayerNorm1P(nn.LayerNorm):
|
||||
def __call__(self, x):
|
||||
weight = self.weight + 1 if "weight" in self else None
|
||||
bias = self.bias if "bias" in self else None
|
||||
return mx.fast.layer_norm(x, weight, bias, self.eps)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
|
||||
self.partial_rotary_factor = args.partial_rotary_factor
|
||||
|
||||
self.scale = head_dim**-0.5
|
||||
if hasattr(args, "attention_bias"):
|
||||
attention_bias = args.attention_bias
|
||||
else:
|
||||
attention_bias = False
|
||||
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
|
||||
|
||||
rope_scale = 1.0
|
||||
if args.rope_scaling and args.rope_scaling["type"] == "linear":
|
||||
assert isinstance(args.rope_scaling["factor"], float)
|
||||
rope_scale = 1 / args.rope_scaling["factor"]
|
||||
self.rope = nn.RoPE(
|
||||
int(self.partial_rotary_factor * self.head_dim),
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, _ = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
hidden_dim = args.intermediate_size
|
||||
mlp_bias = args.mlp_bias
|
||||
|
||||
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
|
||||
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.down_proj(relu_squared(self.up_proj(x)))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.num_attention_heads = args.num_attention_heads
|
||||
self.hidden_size = args.hidden_size
|
||||
self.self_attn = Attention(args)
|
||||
self.mlp = MLP(args)
|
||||
self.input_layernorm = NemotronLayerNorm1P(args.hidden_size, eps=args.norm_eps)
|
||||
self.post_attention_layernorm = NemotronLayerNorm1P(
|
||||
args.hidden_size, eps=args.norm_eps
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
|
||||
class NemotronModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
assert self.vocab_size > 0
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [
|
||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||
]
|
||||
self.norm = NemotronLayerNorm1P(args.hidden_size, eps=args.norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, cache=c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.model = NemotronModel(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
if self.args.tie_word_embeddings:
|
||||
out = self.model.embed_tokens.as_linear(out)
|
||||
else:
|
||||
out = self.lm_head(out)
|
||||
return out
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
@@ -1,17 +1,19 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import sys
|
||||
from dataclasses import dataclass
|
||||
from sys import exit
|
||||
from typing import Optional, Tuple
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask
|
||||
|
||||
try:
|
||||
import hf_olmo
|
||||
except ImportError:
|
||||
print("To run olmo install ai2-olmo: pip install ai2-olmo")
|
||||
exit(1)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -66,7 +68,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -96,7 +98,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.attend(self.att_norm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -126,10 +128,7 @@ class Transformer(nn.Module):
|
||||
):
|
||||
h = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.blocks)
|
||||
@@ -175,11 +174,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.transformer.blocks
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.d_model // self.args.n_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.n_heads
|
||||
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -78,7 +80,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -105,8 +107,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
@@ -150,7 +152,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.attn(self.attn_norm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -180,10 +182,7 @@ class OpenELMModel(nn.Module):
|
||||
):
|
||||
h = self.token_embeddings(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -219,11 +218,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.transformer.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.head_dim
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_kv_heads
|
||||
|
@@ -1,3 +1,5 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Tuple
|
||||
@@ -5,7 +7,7 @@ from typing import Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -91,8 +93,13 @@ class PhiAttention(nn.Module):
|
||||
keys = self.rope(keys)
|
||||
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries.astype(mx.float32), keys, values, scale=scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries.astype(mx.float32),
|
||||
keys,
|
||||
values,
|
||||
cache=cache,
|
||||
scale=scale,
|
||||
mask=mask,
|
||||
).astype(values.dtype)
|
||||
|
||||
output = output.moveaxis(2, 1).reshape(B, L, -1)
|
||||
@@ -138,14 +145,12 @@ class PhiModel(nn.Module):
|
||||
|
||||
def __call__(self, x, cache):
|
||||
x = self.embed_tokens(x)
|
||||
|
||||
mask = create_attention_mask(x, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
mask = None
|
||||
if x.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(x.dtype)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
x = layer(x, mask, c)
|
||||
return self.final_layernorm(x)
|
||||
@@ -162,19 +167,11 @@ class Model(nn.Module):
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache: mx.array = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
y = self.model(x, cache)
|
||||
return self.lm_head(y)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .su_rope import SuScaledRotaryEmbedding
|
||||
|
||||
|
||||
@@ -33,9 +35,9 @@ class ModelArgs(BaseModelArgs):
|
||||
if not all(key in self.rope_scaling for key in required_keys):
|
||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||
|
||||
if self.rope_scaling["type"] not in ["su", "linear"]:
|
||||
if self.rope_scaling["type"] not in ["longrope", "su", "linear"]:
|
||||
print(
|
||||
"[WARNING] rope_scaling 'type' currently only supports 'linear' and 'su'; setting rope scaling to false."
|
||||
"[WARNING] rope_scaling 'type' currently only supports 'linear', 'su', and 'longrope'; setting rope scaling to false."
|
||||
)
|
||||
self.rope_scaling = None
|
||||
|
||||
@@ -57,19 +59,17 @@ class Attention(nn.Module):
|
||||
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||
|
||||
rope_scale = 1.0
|
||||
if args.rope_scaling and args.rope_scaling["type"] == "su":
|
||||
if args.rope_scaling and args.rope_scaling["type"] in ["longrope", "su"]:
|
||||
self.rope = SuScaledRotaryEmbedding(
|
||||
head_dim,
|
||||
traditional=False,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
original_max_position_embeddings=args.original_max_position_embeddings,
|
||||
short_factor=args.rope_scaling["short_factor"],
|
||||
long_factor=args.rope_scaling["long_factor"],
|
||||
)
|
||||
else:
|
||||
rope_scale = 1.0
|
||||
if args.rope_scaling and args.rope_scaling["type"] == "linear":
|
||||
assert isinstance(args.rope_scaling["factor"], float)
|
||||
rope_scale = 1 / args.rope_scaling["factor"]
|
||||
@@ -84,7 +84,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -107,8 +107,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
@@ -143,7 +143,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -172,10 +172,7 @@ class Phi3Model(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -205,11 +202,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,12 +1,14 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -20,14 +22,14 @@ class ModelArgs(BaseModelArgs):
|
||||
num_attention_heads: int
|
||||
layer_norm_epsilon: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: Optional[int] = None
|
||||
num_key_value_heads: int
|
||||
mup_attn_multiplier: float = 1.0
|
||||
mup_use_scaling: bool = True
|
||||
mup_embedding_multiplier: float = 10.0
|
||||
mup_width_multiplier: float = 8.0
|
||||
rope_embedding_base: float = 1000000
|
||||
rope_position_scale: float = 1.0
|
||||
blocksparse_block_size: Tuple[int] = (64,)
|
||||
blocksparse_block_size: int = 64
|
||||
blocksparse_num_local_blocks: int = 16
|
||||
blocksparse_vert_stride: int = 8
|
||||
|
||||
@@ -59,7 +61,6 @@ class Attention(nn.Module):
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
assert args.num_key_value_heads is not None
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
self.n_q_per_kv = n_heads // n_kv_heads
|
||||
|
||||
@@ -159,7 +160,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -187,8 +188,8 @@ class Attention(nn.Module):
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
else:
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.dense(output)
|
||||
@@ -228,7 +229,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -263,10 +264,7 @@ class Phi3Model(nn.Module):
|
||||
if self.mup_embedding_multiplier:
|
||||
h = self.mup_embedding_multiplier * h
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -305,16 +303,8 @@ class Model(nn.Module):
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
def sanitize(self, weights):
|
||||
# Remove unused precomputed rotary freqs
|
||||
return {
|
||||
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
||||
}
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
211
llms/mlx_lm/models/phimoe.py
Normal file
211
llms/mlx_lm/models/phimoe.py
Normal file
@@ -0,0 +1,211 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .su_rope import SuScaledRotaryEmbedding
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str = "phimoe"
|
||||
vocab_size: int = 32064
|
||||
hidden_size: int = 4096
|
||||
intermediate_size: int = 6400
|
||||
num_hidden_layers: int = 32
|
||||
num_attention_heads: int = 32
|
||||
num_key_value_heads: int = 8
|
||||
max_position_embeddings: int = 131072
|
||||
original_max_position_embeddings: int = 4096
|
||||
rms_norm_eps: float = 1e-6
|
||||
rope_scaling: Dict[str, Union[float, List[float]]] = None
|
||||
num_local_experts: int = 16
|
||||
num_experts_per_tok: int = 2
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=True)
|
||||
|
||||
self.rope = SuScaledRotaryEmbedding(
|
||||
head_dim,
|
||||
base=args.rope_theta,
|
||||
max_position_embeddings=args.max_position_embeddings,
|
||||
original_max_position_embeddings=args.original_max_position_embeddings,
|
||||
short_factor=args.rope_scaling["short_factor"],
|
||||
long_factor=args.rope_scaling["long_factor"],
|
||||
short_mscale=args.rope_scaling["short_mscale"],
|
||||
long_mscale=args.rope_scaling["long_mscale"],
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class PhiMoESparseMoeBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.hidden_dim = args.hidden_size
|
||||
self.ffn_dim = args.intermediate_size
|
||||
self.num_experts = args.num_local_experts
|
||||
self.top_k = args.num_experts_per_tok
|
||||
|
||||
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
||||
self.switch_mlp = SwitchGLU(self.hidden_dim, self.ffn_dim, self.num_experts)
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
gates = self.gate(x)
|
||||
|
||||
k = self.top_k
|
||||
inds = mx.stop_gradient(mx.argpartition(-gates, kth=k - 1, axis=-1)[..., :k])
|
||||
scores = mx.take_along_axis(gates, inds, axis=-1)
|
||||
scores = mx.softmax(scores, axis=-1, precise=True)
|
||||
|
||||
y = self.switch_mlp(x, inds)
|
||||
y = (y * scores[..., None]).sum(axis=-2)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class PhiMoEDecoderLayer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.hidden_size = args.hidden_size
|
||||
|
||||
self.self_attn = Attention(args)
|
||||
self.block_sparse_moe = PhiMoESparseMoeBlock(args)
|
||||
self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm(
|
||||
args.hidden_size, eps=args.rms_norm_eps
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
residual = x
|
||||
hidden_states = self.input_layernorm(x)
|
||||
hidden_states = self.self_attn(hidden_states, mask=mask, cache=cache)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class PhiMoEModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [PhiMoEDecoderLayer(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.model_type = args.model_type
|
||||
self.args = args
|
||||
self.model = PhiMoEModel(args)
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=True)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
def sanitize(self, weights):
|
||||
if "model.layers.0.block_sparse_moe.experts.0.w1.weight" not in weights:
|
||||
return weights
|
||||
for l in range(self.args.num_hidden_layers):
|
||||
prefix = f"model.layers.{l}"
|
||||
for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
|
||||
for k in ["weight", "scales", "biases"]:
|
||||
if f"{prefix}.block_sparse_moe.experts.0.{n}.{k}" in weights:
|
||||
to_join = [
|
||||
weights.pop(
|
||||
f"{prefix}.block_sparse_moe.experts.{e}.{n}.{k}"
|
||||
)
|
||||
for e in range(self.args.num_local_experts)
|
||||
]
|
||||
weights[f"{prefix}.block_sparse_moe.switch_mlp.{m}.{k}"] = (
|
||||
mx.stack(to_join)
|
||||
)
|
||||
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
@@ -1,3 +1,5 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import inspect
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
@@ -6,6 +8,7 @@ from typing import Tuple
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchMLP
|
||||
|
||||
|
||||
@@ -68,8 +71,13 @@ class RoPEAttention(nn.Module):
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries.astype(mx.float32), keys, values, scale=scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries.astype(mx.float32),
|
||||
keys,
|
||||
values,
|
||||
cache=cache,
|
||||
scale=scale,
|
||||
mask=mask,
|
||||
).astype(values.dtype)
|
||||
output = output.moveaxis(2, 1).reshape(B, L, -1)
|
||||
|
||||
@@ -165,12 +173,9 @@ class Model(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache: mx.array = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
mask = None
|
||||
if x.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(x.dtype)
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
mask = create_attention_mask(x, cache)
|
||||
|
||||
y = self.transformer(x, mask, cache)
|
||||
return self.lm_head(y)
|
||||
@@ -193,11 +198,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.transformer.h
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.model_dim // self.args.num_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_heads
|
||||
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, List, Optional, Tuple, Union
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -60,8 +62,8 @@ class Attention(nn.Module):
|
||||
self,
|
||||
hidden_states: mx.array,
|
||||
attention_mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
bsz, q_len, _ = hidden_states.shape
|
||||
|
||||
queries = self.q_proj(hidden_states)
|
||||
@@ -87,10 +89,14 @@ class Attention(nn.Module):
|
||||
queries = self.rotary_emb(queries)
|
||||
keys = self.rotary_emb(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
keys = mx.tile(keys, [1, self.config.n_shared_head, 1, 1])
|
||||
values = mx.tile(values, [1, self.config.n_shared_head, 1, 1])
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries,
|
||||
keys,
|
||||
values,
|
||||
cache=cache,
|
||||
scale=self.scale,
|
||||
mask=attention_mask,
|
||||
)
|
||||
@@ -125,8 +131,8 @@ class PlamoDecoderLayer(nn.Module):
|
||||
self,
|
||||
hidden_states: mx.array,
|
||||
attention_mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> Tuple[Any, ...]:
|
||||
cache: Optional[Any] = None,
|
||||
):
|
||||
# from LlamaDecoder
|
||||
residual = hidden_states
|
||||
|
||||
@@ -167,14 +173,11 @@ class PlamoModel(nn.Module):
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache: Optional[List[Union[Tuple[mx.array, mx.array], None]]] = None,
|
||||
) -> Tuple[mx.array, Optional[List[Union[Tuple[mx.array, mx.array], None]]]]:
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(self.embed_tokens.weight.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None for _ in range(len(self.layers.layers))]
|
||||
@@ -198,19 +201,11 @@ class Model(nn.Module):
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache: Optional[List[Tuple[mx.array, mx.array]]] = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
out = self.model(inputs, cache)
|
||||
return self.lm_head(out)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_attention_heads // self.args.n_shared_head
|
||||
|
@@ -1,10 +1,11 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -63,8 +64,8 @@ class Attention(nn.Module):
|
||||
queries = self.rotary_emb(queries)
|
||||
keys = self.rotary_emb(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
@@ -122,11 +123,7 @@ class QwenModel(nn.Module):
|
||||
def __call__(self, inputs, mask=None, cache=None):
|
||||
x = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
T = x.shape[1]
|
||||
if T > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
||||
mask = mask.astype(x.dtype)
|
||||
mask = create_attention_mask(x, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.h)
|
||||
@@ -151,19 +148,11 @@ class Model(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache: mx.array = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
y = self.transformer(x, mask, cache)
|
||||
return self.lm_head(y)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.transformer.h
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_attention_heads
|
||||
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -68,7 +70,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -87,8 +89,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
@@ -122,7 +124,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -151,10 +153,7 @@ class Qwen2Model(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -197,11 +196,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,11 +1,13 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .switch_layers import SwitchGLU
|
||||
|
||||
|
||||
@@ -68,7 +70,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -87,8 +89,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
@@ -160,7 +162,7 @@ class Qwen2MoeDecoderLayer(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -189,10 +191,7 @@ class Qwen2MoeModel(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -237,11 +236,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
456
llms/mlx_lm/models/recurrent_gemma.py
Normal file
456
llms/mlx_lm/models/recurrent_gemma.py
Normal file
@@ -0,0 +1,456 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Literal, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .cache import MambaCache, RotatingKVCache
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
attention_bias: bool
|
||||
conv1d_width: int
|
||||
hidden_size: int
|
||||
intermediate_size: int
|
||||
logits_soft_cap: float
|
||||
num_attention_heads: int
|
||||
num_hidden_layers: int
|
||||
num_key_value_heads: int
|
||||
rms_norm_eps: float
|
||||
rope_theta: float
|
||||
attention_window_size: int
|
||||
vocab_size: int
|
||||
embeddings_scale_by_sqrt_dim: bool = True
|
||||
block_types: Optional[List[str]] = None
|
||||
_block_types: Optional[List[str]] = None
|
||||
|
||||
def __post_init__(self):
|
||||
# For some reason these have different names in 2B and 9B
|
||||
if self.block_types is None:
|
||||
self.block_types = self._block_types
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
def __call__(self, x):
|
||||
return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps)
|
||||
|
||||
|
||||
def rnn_scan(x, a, h0):
|
||||
assert x.ndim == 3
|
||||
assert a.shape == x.shape[-a.ndim :]
|
||||
assert a.dtype == x.dtype
|
||||
|
||||
if x.shape[1] == 1:
|
||||
# Using scan in sampling mode.
|
||||
if h0 is None:
|
||||
return x, x[:, 0]
|
||||
|
||||
else:
|
||||
y = a * h0[:, None] + x
|
||||
return y, y[:, -1]
|
||||
|
||||
else:
|
||||
# Using scan in linear mode.
|
||||
if h0 is not None:
|
||||
h_t = h0
|
||||
else:
|
||||
B, _, D = x.shape
|
||||
h_t = mx.zeros((B, D), dtype=x.dtype)
|
||||
|
||||
y = mx.zeros_like(x)
|
||||
for t in range(x.shape[1]):
|
||||
h_t = a[:, t] * h_t + x[:, t]
|
||||
y[:, t] = h_t
|
||||
|
||||
return y, h_t
|
||||
|
||||
|
||||
class Conv1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
kernel_size: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.weight = mx.zeros((channels, kernel_size, 1))
|
||||
self.bias = mx.zeros((channels,))
|
||||
|
||||
def __call__(self, x, cache=None):
|
||||
B, L, C = x.shape
|
||||
groups, K, _ = self.weight.shape
|
||||
|
||||
if cache is not None:
|
||||
x = mx.concatenate([cache, x], axis=1)
|
||||
else:
|
||||
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
||||
|
||||
y = mx.conv_general(x, self.weight, groups=groups)
|
||||
y = y + self.bias
|
||||
|
||||
return y, x[:, -K + 1 :, :]
|
||||
|
||||
|
||||
class RGLRU(nn.Module):
|
||||
"""A Real-Gated Linear Recurrent Unit (RG-LRU) layer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width: int,
|
||||
num_heads: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = self.width // self.num_heads
|
||||
|
||||
self.recurrent_param = mx.zeros((self.width,))
|
||||
|
||||
self.input_gate_weight = mx.zeros(
|
||||
(self.num_heads, self.head_dim, self.head_dim),
|
||||
)
|
||||
self.input_gate_bias = mx.zeros((self.num_heads, self.head_dim))
|
||||
|
||||
self.recurrent_gate_weight = mx.zeros(
|
||||
(self.num_heads, self.head_dim, self.head_dim),
|
||||
)
|
||||
self.recurrent_gate_bias = mx.zeros((self.num_heads, self.head_dim))
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
B, L, _ = x.shape
|
||||
|
||||
def apply_block_linear(h, w, b):
|
||||
h = h.reshape((B, L, self.num_heads, self.head_dim))
|
||||
h = (h.swapaxes(1, 2) @ w).swapaxes(1, 2) + b
|
||||
return mx.sigmoid(h.flatten(2, 3))
|
||||
|
||||
# Gates for x and a.
|
||||
gate_x = apply_block_linear(x, self.input_gate_weight, self.input_gate_bias)
|
||||
gate_a = apply_block_linear(
|
||||
x, self.recurrent_gate_weight, self.recurrent_gate_bias
|
||||
)
|
||||
|
||||
# Compute the parameter `A` of the recurrence.
|
||||
log_a = -8.0 * gate_a * nn.softplus(self.recurrent_param)
|
||||
a = mx.exp(log_a)
|
||||
a_square = mx.exp(2 * log_a)
|
||||
|
||||
# Gate the input.
|
||||
gated_x = x * gate_x
|
||||
|
||||
# Apply gamma normalization to the input.
|
||||
multiplier = mx.sqrt(1 - a_square)
|
||||
if cache is None:
|
||||
multiplier[:, 0, :] = 1.0
|
||||
normalized_x = gated_x * multiplier.astype(x.dtype)
|
||||
|
||||
y, last_h = rnn_scan(
|
||||
x=normalized_x,
|
||||
a=a,
|
||||
h0=cache,
|
||||
)
|
||||
|
||||
return y, last_h
|
||||
|
||||
|
||||
class RecurrentBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width: int,
|
||||
num_heads: int,
|
||||
lru_width: int = None,
|
||||
conv1d_temporal_width: int = 4,
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.num_heads = num_heads
|
||||
self.lru_width = lru_width or width
|
||||
self.conv1d_temporal_width = conv1d_temporal_width
|
||||
|
||||
self.linear_y = nn.Linear(width, self.lru_width)
|
||||
self.linear_x = nn.Linear(width, self.lru_width)
|
||||
self.linear_out = nn.Linear(self.lru_width, width)
|
||||
self.conv_1d = Conv1d(
|
||||
channels=self.lru_width,
|
||||
kernel_size=self.conv1d_temporal_width,
|
||||
)
|
||||
self.rg_lru = RGLRU(
|
||||
width=self.lru_width,
|
||||
num_heads=self.num_heads,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache=None,
|
||||
mask=None,
|
||||
):
|
||||
# y branch.
|
||||
y = self.linear_y(x)
|
||||
y = nn.gelu_approx(y)
|
||||
|
||||
# x branch.
|
||||
x = self.linear_x(x)
|
||||
if cache is None:
|
||||
cache = [None, None]
|
||||
x, cache[0] = self.conv_1d(x=x, cache=cache[0])
|
||||
x, cache[1] = self.rg_lru(x=x, cache=cache[1])
|
||||
|
||||
x = x * y
|
||||
x = self.linear_out(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class LocalAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width: int,
|
||||
num_heads: int,
|
||||
window_size: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.num_heads = num_heads
|
||||
self.window_size = window_size
|
||||
self.scale = (width // num_heads) ** (-0.5)
|
||||
|
||||
self.head_dim = self.width // self.num_heads
|
||||
self.q_proj = nn.Linear(self.width, self.width, bias=False)
|
||||
self.k_proj = nn.Linear(self.width, self.head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(self.width, self.head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.width, self.width, bias=True)
|
||||
self.rope = nn.RoPE(
|
||||
self.head_dim // 2,
|
||||
traditional=False,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache=None,
|
||||
mask=None,
|
||||
):
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, 1, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, 1, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
|
||||
def __init__(self, width: int, expanded_width: int):
|
||||
super().__init__()
|
||||
self.up_proj = nn.Linear(width, expanded_width // 2)
|
||||
self.gate_proj = nn.Linear(width, expanded_width // 2)
|
||||
self.down_proj = nn.Linear(expanded_width // 2, width)
|
||||
|
||||
def __call__(self, x: mx.array):
|
||||
gate = self.gate_proj(x)
|
||||
x = self.up_proj(x)
|
||||
return self.down_proj(nn.gelu_approx(gate) * x)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width: int,
|
||||
mlp_expanded_width: int,
|
||||
num_heads: int,
|
||||
attention_window_size: int,
|
||||
temporal_block_type: str,
|
||||
lru_width: Optional[int] = None,
|
||||
conv1d_temporal_width: int = 4,
|
||||
):
|
||||
"""Initializes the residual block.
|
||||
|
||||
Args:
|
||||
width: The width of the block.
|
||||
mlp_expanded_width: The width of the expansion inside the MLP block.
|
||||
num_heads: The number of heads for the Attention or the RG-LRU.
|
||||
attention_window_size: The window size for the local attention block.
|
||||
temporal_block_type: Either "recurrent" or "attention", specifying the
|
||||
type of recurrent block to use.
|
||||
lru_width: The width of the RG-LRU if different from `width`.
|
||||
conv1d_temporal_width: The width of the temporal convolution.
|
||||
"""
|
||||
super().__init__()
|
||||
self.width = width
|
||||
self.mlp_expanded_width = mlp_expanded_width
|
||||
self.num_heads = num_heads
|
||||
self.attention_window_size = attention_window_size
|
||||
self.temporal_block_type = temporal_block_type
|
||||
self.lru_width = lru_width
|
||||
self.conv1d_temporal_width = conv1d_temporal_width
|
||||
|
||||
self.temporal_pre_norm = RMSNorm(width)
|
||||
if self.temporal_block_type == "recurrent":
|
||||
self.temporal_block = RecurrentBlock(
|
||||
width=self.width,
|
||||
num_heads=self.num_heads,
|
||||
lru_width=self.lru_width,
|
||||
conv1d_temporal_width=self.conv1d_temporal_width,
|
||||
)
|
||||
|
||||
else:
|
||||
self.temporal_block = LocalAttentionBlock(
|
||||
width=self.width,
|
||||
num_heads=self.num_heads,
|
||||
window_size=self.attention_window_size,
|
||||
)
|
||||
|
||||
self.channel_pre_norm = RMSNorm(width)
|
||||
self.mlp_block = MLPBlock(
|
||||
width=self.width,
|
||||
expanded_width=self.mlp_expanded_width,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache=None,
|
||||
mask=None,
|
||||
):
|
||||
raw_x = x
|
||||
|
||||
inputs_normalized = self.temporal_pre_norm(raw_x)
|
||||
|
||||
x = self.temporal_block(inputs_normalized, cache=cache, mask=mask)
|
||||
residual = x + raw_x
|
||||
|
||||
x = self.channel_pre_norm(residual)
|
||||
x = self.mlp_block(x)
|
||||
|
||||
x = x + residual
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Griffin(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
self.embed_tokens = nn.Embedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
|
||||
self.scale_by_sqrt_dim = config.embeddings_scale_by_sqrt_dim
|
||||
block_types = config.block_types
|
||||
|
||||
self.layers = [
|
||||
ResidualBlock(
|
||||
width=config.hidden_size,
|
||||
mlp_expanded_width=config.intermediate_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
attention_window_size=config.attention_window_size,
|
||||
temporal_block_type=block_types[i % len(block_types)],
|
||||
lru_width=None,
|
||||
)
|
||||
for i in range(config.num_hidden_layers)
|
||||
]
|
||||
self.final_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
tokens,
|
||||
cache=None,
|
||||
):
|
||||
x = self.embed_tokens(tokens)
|
||||
if self.scale_by_sqrt_dim:
|
||||
x = x * math.sqrt(x.shape[-1])
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for i, block in enumerate(self.layers):
|
||||
if block.temporal_block_type != "recurrent":
|
||||
mask_cache = [cache[i]]
|
||||
|
||||
mask = create_attention_mask(x, mask_cache)
|
||||
|
||||
for i, block in enumerate(self.layers):
|
||||
x = block(x, mask=mask, cache=cache[i])
|
||||
|
||||
return self.final_norm(x)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
self.args = config
|
||||
self.model = Griffin(config)
|
||||
self.model_type = config.model_type
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, tokens: mx.array, cache=None) -> mx.array:
|
||||
"""
|
||||
Args:
|
||||
tokens: Sequence of input tokens.
|
||||
"""
|
||||
logits = self.model(tokens, cache=cache)
|
||||
if "lm_head" in self:
|
||||
logits = self.lm_head(logits)
|
||||
else:
|
||||
logits = self.model.embed_tokens.as_linear(logits)
|
||||
|
||||
c = self.args.logits_soft_cap
|
||||
if c:
|
||||
logits = mx.tanh(logits / c) * c
|
||||
return logits
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
def sanitize(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv_1d.weight" in k and v.shape[-1] != 1:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
if "lm_head.weight" not in weights:
|
||||
self.pop("lm_head")
|
||||
return weights
|
||||
|
||||
def make_cache(self):
|
||||
cache = []
|
||||
for layer in self.layers:
|
||||
if layer.temporal_block_type == "recurrent":
|
||||
cache.append(MambaCache())
|
||||
else:
|
||||
cache.append(RotatingKVCache(max_size=self.args.attention_window_size))
|
||||
return cache
|
@@ -1,11 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -119,8 +120,8 @@ class Attention(nn.Module):
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=scale, mask=mask
|
||||
).astype(values.dtype)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
@@ -196,24 +197,12 @@ class Model(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache: mx.array = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
mask = None
|
||||
if x.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(x.dtype)
|
||||
|
||||
cache=None,
|
||||
) -> mx.array:
|
||||
mask = create_attention_mask(x, cache)
|
||||
y = self.model(x, mask, cache)
|
||||
return self.lm_head(y)
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,10 +1,12 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
from typing import Any, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, KVCache
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -43,7 +45,7 @@ class Attention(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
@@ -62,8 +64,8 @@ class Attention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
@@ -98,7 +100,7 @@ class TransformerBlock(nn.Module):
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[KVCache] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
@@ -127,10 +129,7 @@ class Starcoder2Model(nn.Module):
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
@@ -165,11 +164,3 @@ class Model(nn.Module):
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
||||
|
@@ -1,30 +1,30 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from typing import List, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
|
||||
class SuScaledRotaryEmbedding:
|
||||
class SuScaledRotaryEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
traditional: bool = False,
|
||||
base: float = 10000.0,
|
||||
scale: float = 1.0,
|
||||
max_position_embeddings: int = 131072,
|
||||
original_max_position_embeddings: int = 4096,
|
||||
short_factor: Union[List[float], float] = 1.0,
|
||||
long_factor: Union[List[float], float] = 1.0,
|
||||
short_mscale: float = None,
|
||||
long_mscale: float = None,
|
||||
):
|
||||
"""
|
||||
Phi3Su Scaled Rotary Embedding layer for Phi-3 models.
|
||||
|
||||
Args:
|
||||
dims (int): The feature dimensions to be rotated.
|
||||
traditional (bool, optional): Unused. Default: ``False``.
|
||||
base (int, optional): Base for the exponential scaling.
|
||||
scale (float, optional): The scale used to scale the positions.
|
||||
Default: ``1.0``.
|
||||
max_position_embeddings (int, optional): The maximum sequence
|
||||
length that this model was trained with. This is used to determine
|
||||
the size of the original RoPE embeddings when using long scaling.
|
||||
@@ -39,41 +39,26 @@ class SuScaledRotaryEmbedding:
|
||||
long_factor (float or list[float], optional): List of scaling
|
||||
factors for sequences of length greater than
|
||||
``original_max_position_embeddings``. Default: ``1.0``.
|
||||
short_mscale (float, optional): Scale the input prior to embedding.
|
||||
long_mscale (float, optional): Scale the input prior to embedding.
|
||||
"""
|
||||
self.inv_freq_short = 1.0 / (
|
||||
mx.array(short_factor, dtype=mx.float32)
|
||||
* base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
||||
)
|
||||
self.inv_freq_long = 1.0 / (
|
||||
scale
|
||||
* mx.array(long_factor, dtype=mx.float32)
|
||||
* base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
||||
)
|
||||
super().__init__()
|
||||
freqs = base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
|
||||
self._freqs = mx.array(long_factor, dtype=mx.float32) * freqs
|
||||
self.original_max_position_embeddings = original_max_position_embeddings
|
||||
self.scaling_factor = math.sqrt(
|
||||
self.scale = long_mscale or math.sqrt(
|
||||
1
|
||||
+ math.log(max_position_embeddings / original_max_position_embeddings)
|
||||
/ math.log(original_max_position_embeddings)
|
||||
)
|
||||
|
||||
def _get_cos_sin(self, offset, L):
|
||||
position_ids = mx.arange(offset, offset + L, dtype=mx.float32)
|
||||
inv_freq = (
|
||||
self.inv_freq_long
|
||||
if (offset + L) > self.original_max_position_embeddings
|
||||
else self.inv_freq_short
|
||||
)
|
||||
freqs = position_ids[:, None] * inv_freq[None, :]
|
||||
emb = mx.concatenate([freqs, freqs], axis=-1)
|
||||
cos = mx.cos(emb) * self.scaling_factor
|
||||
sin = mx.sin(emb) * self.scaling_factor
|
||||
return cos, sin
|
||||
|
||||
def __call__(self, x, offset: int = 0):
|
||||
def _rotate_half(_x):
|
||||
midpoint = _x.shape[-1] // 2
|
||||
x1, x2 = _x[..., :midpoint], _x[..., midpoint:]
|
||||
return mx.concatenate([-x2, x1], axis=-1)
|
||||
|
||||
cos, sin = self._get_cos_sin(offset, x.shape[2])
|
||||
return (x * cos) + (_rotate_half(x) * sin)
|
||||
return mx.fast.rope(
|
||||
self.scale * x,
|
||||
x.shape[-1],
|
||||
traditional=False,
|
||||
base=None,
|
||||
scale=1.0,
|
||||
offset=offset,
|
||||
freqs=self._freqs,
|
||||
)
|
||||
|
@@ -1,3 +1,5 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
|
@@ -1,6 +1,6 @@
|
||||
mlx>=0.14.1
|
||||
mlx>=0.19.2
|
||||
numpy
|
||||
transformers>=4.39.3
|
||||
transformers[sentencepiece]>=4.39.3
|
||||
protobuf
|
||||
pyyaml
|
||||
jinja2
|
||||
|
@@ -1,6 +1,69 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
def min_p_sampling(
|
||||
logits: mx.array,
|
||||
min_p: float,
|
||||
min_tokens_to_keep: int = 1,
|
||||
temperature=1.0,
|
||||
) -> mx.array:
|
||||
"""
|
||||
Apply min-p sampling to the logits.
|
||||
|
||||
Min-p keeps all tokens that are above a minimum probability, scaled by the
|
||||
probability of the most likely token. As a result, the filter is more
|
||||
aggressive given a very high-probability token.
|
||||
|
||||
Args:
|
||||
logits: The logits from the model's output.
|
||||
min_p (float): Minimum token probability. Typical values are in the
|
||||
0.01-0.2 range, comparably selective as setting `top_p` in the
|
||||
0.99-0.8 range.
|
||||
min_tokens_to_keep (int, optional): Minimum number of tokens that cannot
|
||||
be filtered. Default: ``1``.
|
||||
|
||||
"""
|
||||
if not (0 <= min_p <= 1.0):
|
||||
raise ValueError(
|
||||
f"`min_p` has to be a float in the [0, 1] interval, but is {min_p}"
|
||||
)
|
||||
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
|
||||
raise ValueError(
|
||||
f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}"
|
||||
)
|
||||
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
|
||||
|
||||
# Softmax probabilities
|
||||
probs = mx.softmax(logits * (1 / temperature), axis=-1)
|
||||
|
||||
# Indices sorted in decreasing order
|
||||
sorted_indices = mx.argsort(-logits).squeeze(0)
|
||||
sorted_probs = probs[..., sorted_indices]
|
||||
|
||||
# Top probability
|
||||
top_probs = probs[..., sorted_indices[0]]
|
||||
|
||||
# Calculate the min_p threshold
|
||||
scaled_min_p = min_p * top_probs
|
||||
|
||||
# Mask tokens that have a probability less than the scaled min_p
|
||||
tokens_to_remove = sorted_probs < scaled_min_p
|
||||
tokens_to_remove[..., :min_tokens_to_keep] = False
|
||||
|
||||
# Create pool of tokens with probability less than scaled min_p
|
||||
selected_probs = mx.where(tokens_to_remove, 0, sorted_probs)
|
||||
|
||||
# Return sampled token
|
||||
sorted_token = mx.random.categorical(mx.log(selected_probs))
|
||||
return sorted_indices[sorted_token]
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array:
|
||||
"""
|
||||
Apply top-p (nucleus) sampling to logits.
|
||||
@@ -13,7 +76,7 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
||||
token selected based on the top-p criterion.
|
||||
"""
|
||||
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
|
||||
probs = mx.softmax(logits / temperature, axis=-1)
|
||||
probs = mx.softmax(logits * (1 / temperature), axis=-1)
|
||||
|
||||
# sort probs in ascending order
|
||||
sorted_indices = mx.argsort(probs, axis=-1)
|
||||
@@ -25,10 +88,15 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
||||
top_probs = mx.where(
|
||||
cumulative_probs > 1 - top_p,
|
||||
sorted_probs,
|
||||
mx.zeros_like(sorted_probs),
|
||||
0,
|
||||
)
|
||||
|
||||
sorted_token = mx.random.categorical(mx.log(top_probs))
|
||||
token = sorted_indices.squeeze(0)[sorted_token]
|
||||
|
||||
return token
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
def categorical_sampling(logits, temp):
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
@@ -3,22 +3,38 @@
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import platform
|
||||
import time
|
||||
import uuid
|
||||
import warnings
|
||||
from functools import lru_cache
|
||||
from dataclasses import dataclass, field
|
||||
from http.server import BaseHTTPRequestHandler, HTTPServer
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Literal, NamedTuple, Optional, Tuple, Union
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from transformers import PreTrainedTokenizer
|
||||
from huggingface_hub import scan_cache_dir
|
||||
|
||||
from .tokenizer_utils import TokenizerWrapper
|
||||
from ._version import __version__
|
||||
from .models.cache import make_prompt_cache
|
||||
from .utils import generate_step, load
|
||||
|
||||
|
||||
def get_system_fingerprint():
|
||||
gpu_arch = mx.metal.device_info()["architecture"] if mx.metal.is_available() else ""
|
||||
return f"{__version__}-{mx.__version__}-{platform.platform()}-{gpu_arch}"
|
||||
|
||||
|
||||
class StopCondition(NamedTuple):
|
||||
stop_met: bool
|
||||
trim_length: int
|
||||
@@ -58,6 +74,21 @@ def stopping_criteria(
|
||||
return StopCondition(stop_met=False, trim_length=0)
|
||||
|
||||
|
||||
def sequence_overlap(s1: Sequence, s2: Sequence) -> bool:
|
||||
"""
|
||||
Checks if a suffix of s1 has overlap with a prefix of s2
|
||||
|
||||
Args:
|
||||
s1 (Sequence): The first sequence
|
||||
s2 (Sequence): The second sequence
|
||||
|
||||
Returns:
|
||||
bool: If the two sequences have overlap
|
||||
"""
|
||||
max_overlap = min(len(s1), len(s2))
|
||||
return any(s1[-i:] == s2[:i] for i in range(1, max_overlap + 1))
|
||||
|
||||
|
||||
def convert_chat(messages: List[dict], role_mapping: Optional[dict] = None):
|
||||
default_role_mapping = {
|
||||
"system_prompt": (
|
||||
@@ -82,6 +113,13 @@ def convert_chat(messages: List[dict], role_mapping: Optional[dict] = None):
|
||||
return prompt.rstrip()
|
||||
|
||||
|
||||
@dataclass
|
||||
class PromptCache:
|
||||
cache: List[Any] = field(default_factory=list)
|
||||
model_key: Tuple[str, Optional[str]] = ("", None)
|
||||
tokens: List[int] = field(default_factory=list)
|
||||
|
||||
|
||||
class ModelProvider:
|
||||
def __init__(self, cli_args: argparse.Namespace):
|
||||
"""Load models on demand and persist them across the whole process."""
|
||||
@@ -101,13 +139,15 @@ class ModelProvider:
|
||||
"Local models must be relative to the current working dir."
|
||||
)
|
||||
|
||||
def load(self, model_path):
|
||||
if self.model_key == model_path:
|
||||
# Added in adapter_path to load dynamically
|
||||
def load(self, model_path, adapter_path=None):
|
||||
if self.model_key == (model_path, adapter_path):
|
||||
return self.model, self.tokenizer
|
||||
|
||||
# Remove the old model if it exists.
|
||||
self.model = None
|
||||
self.tokenizer = None
|
||||
self.model_key = None
|
||||
|
||||
# Building tokenizer_config
|
||||
tokenizer_config = {
|
||||
@@ -119,18 +159,22 @@ class ModelProvider:
|
||||
if model_path == "default_model" and self.cli_args.model is not None:
|
||||
model, tokenizer = load(
|
||||
self.cli_args.model,
|
||||
adapter_path=self.cli_args.adapter_path,
|
||||
adapter_path=(
|
||||
adapter_path if adapter_path else self.cli_args.adapter_path
|
||||
), # if the user doesn't change the model but adds an adapter path
|
||||
tokenizer_config=tokenizer_config,
|
||||
)
|
||||
else:
|
||||
self._validate_model_path(model_path)
|
||||
model, tokenizer = load(model_path, tokenizer_config=tokenizer_config)
|
||||
model, tokenizer = load(
|
||||
model_path, adapter_path=adapter_path, tokenizer_config=tokenizer_config
|
||||
)
|
||||
|
||||
if self.cli_args.use_default_chat_template:
|
||||
if tokenizer.chat_template is None:
|
||||
tokenizer.chat_template = tokenizer.default_chat_template
|
||||
|
||||
self.model_key = model_path
|
||||
self.model_key = (model_path, adapter_path)
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
@@ -138,12 +182,21 @@ class ModelProvider:
|
||||
|
||||
|
||||
class APIHandler(BaseHTTPRequestHandler):
|
||||
def __init__(self, model_provider: ModelProvider, *args, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
model_provider: ModelProvider,
|
||||
*args,
|
||||
prompt_cache: Optional[PromptCache] = None,
|
||||
system_fingerprint: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Create static request specific metadata
|
||||
"""
|
||||
self.created = int(time.time())
|
||||
self.model_provider = model_provider
|
||||
self.prompt_cache = prompt_cache or PromptCache()
|
||||
self.system_fingerprint = system_fingerprint or get_system_fingerprint()
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def _set_cors_headers(self):
|
||||
@@ -173,6 +226,7 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
endpoints = {
|
||||
"/v1/completions": self.handle_text_completions,
|
||||
"/v1/chat/completions": self.handle_chat_completions,
|
||||
"/chat/completions": self.handle_chat_completions,
|
||||
}
|
||||
|
||||
if self.path not in endpoints:
|
||||
@@ -193,8 +247,12 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
|
||||
# Extract request parameters from the body
|
||||
self.stream = self.body.get("stream", False)
|
||||
self.stream_options = self.body.get("stream_options", None)
|
||||
self.requested_model = self.body.get("model", "default_model")
|
||||
self.max_tokens = self.body.get("max_tokens", 100)
|
||||
self.adapter = self.body.get("adapters", None)
|
||||
self.max_tokens = self.body.get("max_completion_tokens", None)
|
||||
if self.max_tokens is None:
|
||||
self.max_tokens = self.body.get("max_tokens", 512)
|
||||
self.temperature = self.body.get("temperature", 1.0)
|
||||
self.top_p = self.body.get("top_p", 1.0)
|
||||
self.repetition_penalty = self.body.get("repetition_penalty", 1.0)
|
||||
@@ -205,7 +263,9 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
|
||||
# Load the model if needed
|
||||
try:
|
||||
self.model, self.tokenizer = self.model_provider.load(self.requested_model)
|
||||
self.model, self.tokenizer = self.model_provider.load(
|
||||
self.requested_model, self.adapter
|
||||
)
|
||||
except:
|
||||
self._set_completion_headers(404)
|
||||
self.end_headers()
|
||||
@@ -279,6 +339,8 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
|
||||
if not isinstance(self.requested_model, str):
|
||||
raise ValueError("model must be a string")
|
||||
if self.adapter is not None and not isinstance(self.adapter, str):
|
||||
raise ValueError("adapter must be a string")
|
||||
|
||||
def generate_response(
|
||||
self,
|
||||
@@ -318,7 +380,7 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
# Static response
|
||||
response = {
|
||||
"id": self.request_id,
|
||||
"system_fingerprint": f"fp_{uuid.uuid4()}",
|
||||
"system_fingerprint": self.system_fingerprint,
|
||||
"object": self.object_type,
|
||||
"model": self.requested_model,
|
||||
"created": self.created,
|
||||
@@ -363,16 +425,30 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
|
||||
return response
|
||||
|
||||
def get_prompt_cache(self, prompt):
|
||||
cache_len = len(self.prompt_cache.tokens)
|
||||
if (
|
||||
self.prompt_cache.model_key != self.model_provider.model_key
|
||||
or cache_len >= len(prompt)
|
||||
or self.prompt_cache.tokens != prompt[:cache_len]
|
||||
):
|
||||
self.prompt_cache.model_key = self.model_provider.model_key
|
||||
self.prompt_cache.cache = make_prompt_cache(self.model_provider.model)
|
||||
else:
|
||||
prompt = prompt[cache_len:]
|
||||
self.prompt_cache.tokens.extend(prompt)
|
||||
return prompt
|
||||
|
||||
def handle_completion(
|
||||
self,
|
||||
prompt: mx.array,
|
||||
prompt: List[int],
|
||||
stop_id_sequences: List[List[int]],
|
||||
):
|
||||
"""
|
||||
Generate a response to a prompt and send it to the client in a single batch.
|
||||
|
||||
Args:
|
||||
prompt (mx.array): The prompt, in token form inside of a mlx array
|
||||
prompt (List[int]): The tokenized prompt.
|
||||
stop_id_sequences (List[List[int]]): A list of stop words passed
|
||||
to the stopping_criteria function
|
||||
"""
|
||||
@@ -384,17 +460,21 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
logging.debug(f"Starting completion:")
|
||||
token_logprobs = []
|
||||
top_tokens = []
|
||||
for (token, logprobs), _ in zip(
|
||||
|
||||
prompt = self.get_prompt_cache(prompt)
|
||||
|
||||
for _, (token, logprobs) in zip(
|
||||
range(self.max_tokens),
|
||||
generate_step(
|
||||
prompt=prompt,
|
||||
prompt=mx.array(prompt),
|
||||
model=self.model,
|
||||
temp=self.temperature,
|
||||
top_p=self.top_p,
|
||||
repetition_penalty=self.repetition_penalty,
|
||||
repetition_context_size=self.repetition_context_size,
|
||||
logit_bias=self.logit_bias,
|
||||
prompt_cache=self.prompt_cache.cache,
|
||||
),
|
||||
range(self.max_tokens),
|
||||
):
|
||||
detokenizer.add_token(token)
|
||||
logging.debug(detokenizer.text)
|
||||
@@ -405,7 +485,7 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
top_indices = sorted_indices[: self.logprobs]
|
||||
top_logprobs = logprobs[top_indices]
|
||||
top_token_info = zip(top_indices.tolist(), top_logprobs.tolist())
|
||||
top_tokens.append(dict(top_token_info))
|
||||
top_tokens.append(tuple(top_token_info))
|
||||
|
||||
token_logprobs.append(logprobs[token].item())
|
||||
|
||||
@@ -420,6 +500,7 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
)
|
||||
break
|
||||
|
||||
self.prompt_cache.tokens.extend(tokens)
|
||||
detokenizer.finalize()
|
||||
text = (
|
||||
detokenizer.text
|
||||
@@ -449,16 +530,17 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
|
||||
def handle_stream(
|
||||
self,
|
||||
prompt: mx.array,
|
||||
prompt: List[int],
|
||||
stop_id_sequences: List[List[int]],
|
||||
):
|
||||
"""
|
||||
Generate response to prompt and foward it to the client using a Server Sent Events (SSE) stream.
|
||||
Generate response to prompt and foward it to the client using a Server
|
||||
Sent Events (SSE) stream.
|
||||
|
||||
Args:
|
||||
prompt (mx.array): The prompt, in token form inside of a mlx array
|
||||
stop_id_sequences (List[List[int]]):
|
||||
A list of stop words passed to the stopping_criteria function
|
||||
prompt (mx.array): The tokenized prompt
|
||||
stop_id_sequences (List[List[int]]): A list of stop words passed to
|
||||
the stopping_criteria function
|
||||
"""
|
||||
# No additional headers are needed, call end_headers
|
||||
self.end_headers()
|
||||
@@ -467,31 +549,26 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
detokenizer.reset()
|
||||
tokens = []
|
||||
|
||||
max_stop_id_sequence_len = len(max(stop_id_sequences, default=[]))
|
||||
# Buffer to store the last `max_stop_id_sequence_len` tokens
|
||||
# to check for stop conditions before writing to the stream.
|
||||
stop_sequence_buffer = []
|
||||
stop_sequence_suffix = None
|
||||
logging.debug(f"Starting stream:")
|
||||
for (token, _), _ in zip(
|
||||
|
||||
prompt = self.get_prompt_cache(prompt)
|
||||
|
||||
for _, (token, _) in zip(
|
||||
range(self.max_tokens),
|
||||
generate_step(
|
||||
prompt=prompt,
|
||||
prompt=mx.array(prompt),
|
||||
model=self.model,
|
||||
temp=self.temperature,
|
||||
top_p=self.top_p,
|
||||
repetition_penalty=self.repetition_penalty,
|
||||
repetition_context_size=self.repetition_context_size,
|
||||
prompt_cache=self.prompt_cache.cache,
|
||||
),
|
||||
range(self.max_tokens),
|
||||
):
|
||||
detokenizer.add_token(token)
|
||||
logging.debug(detokenizer.text)
|
||||
tokens.append(token)
|
||||
stop_sequence_buffer.append(token)
|
||||
|
||||
# Continue generating tokens until buffer is as large as the longest stop_id_sequence
|
||||
if len(stop_sequence_buffer) < max_stop_id_sequence_len:
|
||||
continue
|
||||
|
||||
stop_condition = stopping_criteria(
|
||||
tokens,
|
||||
@@ -505,28 +582,59 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
)
|
||||
break
|
||||
|
||||
# If the end of tokens overlaps with a stop sequence, generate new
|
||||
# tokens until we know if the stop sequence is hit or not
|
||||
if any(
|
||||
(sequence_overlap(tokens, sequence) for sequence in stop_id_sequences)
|
||||
):
|
||||
continue
|
||||
|
||||
new_text = detokenizer.last_segment
|
||||
response = self.generate_response(new_text, None)
|
||||
self.wfile.write(f"data: {json.dumps(response)}\n\n".encode())
|
||||
self.wfile.flush()
|
||||
stop_sequence_buffer = []
|
||||
if new_text:
|
||||
response = self.generate_response(new_text, None)
|
||||
self.wfile.write(f"data: {json.dumps(response)}\n\n".encode())
|
||||
self.wfile.flush()
|
||||
|
||||
self.prompt_cache.tokens.extend(tokens)
|
||||
|
||||
# check is there any remaining text to send
|
||||
if stop_sequence_buffer:
|
||||
next_chunk = (
|
||||
detokenizer.last_segment
|
||||
if stop_sequence_suffix is None
|
||||
else detokenizer.last_segment[: -len(stop_sequence_suffix)]
|
||||
)
|
||||
response = self.generate_response(next_chunk, "length")
|
||||
|
||||
detokenizer.finalize()
|
||||
last_segment = detokenizer.last_segment
|
||||
if last_segment:
|
||||
if stop_sequence_suffix is not None:
|
||||
last_segment = last_segment[: -len(stop_sequence_suffix)]
|
||||
response = self.generate_response(last_segment, "length")
|
||||
self.wfile.write(f"data: {json.dumps(response)}\n\n".encode())
|
||||
self.wfile.flush()
|
||||
|
||||
if self.stream_options is not None and self.stream_options["include_usage"]:
|
||||
response = self.completion_usage_response(len(prompt), len(tokens))
|
||||
self.wfile.write(f"data: {json.dumps(response)}\n\n".encode())
|
||||
|
||||
self.wfile.write("data: [DONE]\n\n".encode())
|
||||
self.wfile.flush()
|
||||
|
||||
def handle_chat_completions(self) -> mx.array:
|
||||
def completion_usage_response(
|
||||
self,
|
||||
prompt_token_count: Optional[int] = None,
|
||||
completion_token_count: Optional[int] = None,
|
||||
):
|
||||
response = {
|
||||
"id": self.request_id,
|
||||
"system_fingerprint": self.system_fingerprint,
|
||||
"object": "chat.completion",
|
||||
"model": self.requested_model,
|
||||
"created": self.created,
|
||||
"choices": [],
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_token_count,
|
||||
"completion_tokens": completion_token_count,
|
||||
"total_tokens": prompt_token_count + completion_token_count,
|
||||
},
|
||||
}
|
||||
return response
|
||||
|
||||
def handle_chat_completions(self) -> List[int]:
|
||||
"""
|
||||
Handle a chat completion request.
|
||||
|
||||
@@ -541,13 +649,13 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
self.object_type = (
|
||||
"chat.completions.chunk" if self.stream else "chat.completions"
|
||||
)
|
||||
|
||||
if (
|
||||
hasattr(self.tokenizer, "apply_chat_template")
|
||||
and self.tokenizer.chat_template
|
||||
):
|
||||
prompt = self.tokenizer.apply_chat_template(
|
||||
body["messages"],
|
||||
body.get("tools", None),
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
@@ -555,9 +663,9 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
prompt = convert_chat(body["messages"], body.get("role_mapping"))
|
||||
prompt = self.tokenizer.encode(prompt)
|
||||
|
||||
return mx.array(prompt)
|
||||
return prompt
|
||||
|
||||
def handle_text_completions(self) -> mx.array:
|
||||
def handle_text_completions(self) -> List[int]:
|
||||
"""
|
||||
Handle a text completion request.
|
||||
|
||||
@@ -567,11 +675,48 @@ class APIHandler(BaseHTTPRequestHandler):
|
||||
# Determine response type
|
||||
self.request_id = f"cmpl-{uuid.uuid4()}"
|
||||
self.object_type = "text_completion"
|
||||
|
||||
assert "prompt" in self.body, "Request did not contain a prompt"
|
||||
prompt_text = self.body["prompt"]
|
||||
prompt = self.tokenizer.encode(prompt_text)
|
||||
return mx.array(prompt)
|
||||
return self.tokenizer.encode(self.body["prompt"])
|
||||
|
||||
def do_GET(self):
|
||||
"""
|
||||
Respond to a GET request from a client.
|
||||
"""
|
||||
if self.path == "/v1/models":
|
||||
self.handle_models_request()
|
||||
else:
|
||||
self._set_completion_headers(404)
|
||||
self.end_headers()
|
||||
self.wfile.write(b"Not Found")
|
||||
|
||||
def handle_models_request(self):
|
||||
"""
|
||||
Handle a GET request for the /v1/models endpoint.
|
||||
"""
|
||||
self._set_completion_headers(200)
|
||||
self.end_headers()
|
||||
|
||||
# Scan the cache directory for downloaded mlx models
|
||||
hf_cache_info = scan_cache_dir()
|
||||
downloaded_models = [
|
||||
repo for repo in hf_cache_info.repos if "mlx" in repo.repo_id
|
||||
]
|
||||
|
||||
# Create a list of available models
|
||||
models = [
|
||||
{
|
||||
"id": repo.repo_id,
|
||||
"object": "model",
|
||||
"created": self.created,
|
||||
}
|
||||
for repo in downloaded_models
|
||||
]
|
||||
|
||||
response = {"object": "list", "data": models}
|
||||
|
||||
response_json = json.dumps(response).encode()
|
||||
self.wfile.write(response_json)
|
||||
self.wfile.flush()
|
||||
|
||||
|
||||
def run(
|
||||
@@ -582,9 +727,16 @@ def run(
|
||||
handler_class=APIHandler,
|
||||
):
|
||||
server_address = (host, port)
|
||||
prompt_cache = PromptCache()
|
||||
httpd = server_class(
|
||||
server_address,
|
||||
lambda *args, **kwargs: handler_class(model_provider, *args, **kwargs),
|
||||
lambda *args, **kwargs: handler_class(
|
||||
model_provider,
|
||||
prompt_cache=prompt_cache,
|
||||
system_fingerprint=get_system_fingerprint(),
|
||||
*args,
|
||||
**kwargs,
|
||||
),
|
||||
)
|
||||
warnings.warn(
|
||||
"mlx_lm.server is not recommended for production as "
|
||||
|
@@ -97,6 +97,11 @@ class NaiveStreamingDetokenizer(StreamingDetokenizer):
|
||||
def text(self):
|
||||
if self._current_tokens:
|
||||
self._current_text = self._tokenizer.decode(self._current_tokens)
|
||||
if (
|
||||
self._tokenizer.clean_up_tokenization_spaces
|
||||
and self._current_text[-1] == " "
|
||||
):
|
||||
self._current_text = self._current_text[:-1]
|
||||
if self._current_text and self._current_text[-1] == "\n":
|
||||
self._tokens.extend(self._current_tokens)
|
||||
self._text += self._current_text
|
||||
@@ -164,9 +169,11 @@ class BPEStreamingDetokenizer(StreamingDetokenizer):
|
||||
"""
|
||||
|
||||
_byte_decoder = None
|
||||
_space_matches = (".", "?", "!", ",", "n't", "'m", "'s", "'ve", "'re")
|
||||
|
||||
def __init__(self, tokenizer, trim_space=False):
|
||||
self.trim_space = trim_space
|
||||
def __init__(self, tokenizer):
|
||||
|
||||
self.clean_spaces = tokenizer.clean_up_tokenization_spaces
|
||||
|
||||
# Extract the tokens in a list from id to text
|
||||
self.tokenmap = [None] * len(tokenizer.vocab)
|
||||
@@ -179,24 +186,38 @@ class BPEStreamingDetokenizer(StreamingDetokenizer):
|
||||
# https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
self.make_byte_decoder()
|
||||
|
||||
self._added_ids = set(tokenizer.added_tokens_decoder.keys())
|
||||
|
||||
def reset(self):
|
||||
self.offset = 0
|
||||
self._unflushed = ""
|
||||
self.text = ""
|
||||
self.tokens = []
|
||||
|
||||
def _maybe_trim_space(self, current_text):
|
||||
if len(current_text) == 0:
|
||||
return current_text
|
||||
elif current_text[0] != " ":
|
||||
return current_text
|
||||
elif not self.text:
|
||||
return current_text[1:]
|
||||
elif self.clean_spaces and current_text[1:].startswith(self._space_matches):
|
||||
return current_text[1:]
|
||||
return current_text
|
||||
|
||||
def add_token(self, token):
|
||||
v = self.tokenmap[token]
|
||||
# if the token starts with space
|
||||
if self._byte_decoder[v[0]] == 32:
|
||||
is_added = token in self._added_ids
|
||||
if is_added or self._byte_decoder[v[0]] == 32:
|
||||
current_text = bytearray(
|
||||
self._byte_decoder[c] for c in self._unflushed
|
||||
).decode("utf-8")
|
||||
if self.text or not self.trim_space:
|
||||
self.text += current_text
|
||||
self.text += self._maybe_trim_space(current_text)
|
||||
if is_added:
|
||||
self.text += v
|
||||
self._unflushed = ""
|
||||
else:
|
||||
self.text += _remove_space(current_text)
|
||||
self._unflushed = v
|
||||
self._unflushed = v
|
||||
else:
|
||||
self._unflushed += v
|
||||
|
||||
@@ -204,10 +225,7 @@ class BPEStreamingDetokenizer(StreamingDetokenizer):
|
||||
current_text = bytearray(self._byte_decoder[c] for c in self._unflushed).decode(
|
||||
"utf-8"
|
||||
)
|
||||
if self.text or not self.trim_space:
|
||||
self.text += current_text
|
||||
else:
|
||||
self.text += _remove_space(current_text)
|
||||
self.text += self._maybe_trim_space(current_text)
|
||||
self._unflushed = ""
|
||||
|
||||
@classmethod
|
||||
@@ -252,9 +270,19 @@ class TokenizerWrapper:
|
||||
def __getattr__(self, attr):
|
||||
if attr == "detokenizer":
|
||||
return self._detokenizer
|
||||
elif attr.startswith("_"):
|
||||
return self.__getattribute__(attr)
|
||||
else:
|
||||
return getattr(self._tokenizer, attr)
|
||||
|
||||
def __setattr__(self, attr, value):
|
||||
if attr == "detokenizer":
|
||||
raise AttributeError("Cannot set the detokenizer.")
|
||||
elif attr.startswith("_"):
|
||||
super().__setattr__(attr, value)
|
||||
else:
|
||||
setattr(self._tokenizer, attr, value)
|
||||
|
||||
|
||||
def _match(a, b):
|
||||
if type(a) != type(b):
|
||||
@@ -293,14 +321,7 @@ def _is_spm_decoder_no_space(decoder):
|
||||
|
||||
|
||||
def _is_bpe_decoder(decoder):
|
||||
_target_description = {
|
||||
"type": "ByteLevel",
|
||||
"add_prefix_space": False,
|
||||
"trim_offsets": False,
|
||||
"use_regex": False,
|
||||
}
|
||||
|
||||
return _match(_target_description, decoder)
|
||||
return isinstance(decoder, dict) and decoder.get("type", None) == "ByteLevel"
|
||||
|
||||
|
||||
def load_tokenizer(model_path, tokenizer_config_extra={}):
|
||||
|
@@ -36,7 +36,10 @@ class ChatDataset(Dataset):
|
||||
def __getitem__(self, idx: int):
|
||||
messages = self._data[idx]["messages"]
|
||||
text = self._tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
messages,
|
||||
tools=self._data[idx].get("tools", None),
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
return text
|
||||
|
||||
@@ -73,17 +76,14 @@ class CompletionsDataset(Dataset):
|
||||
return text
|
||||
|
||||
|
||||
def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
|
||||
# Return empty dataset for non-existent paths
|
||||
if not path.exists():
|
||||
return []
|
||||
with open(path, "r") as fid:
|
||||
data = [json.loads(l) for l in fid]
|
||||
if "messages" in data[0]:
|
||||
def create_dataset(data, tokenizer: PreTrainedTokenizer = None):
|
||||
sample = data[0]
|
||||
|
||||
if "messages" in sample:
|
||||
return ChatDataset(data, tokenizer)
|
||||
elif "prompt" in data[0] and "completion" in data[0]:
|
||||
elif "prompt" in sample and "completion" in sample:
|
||||
return CompletionsDataset(data, tokenizer)
|
||||
elif "text" in data[0]:
|
||||
elif "text" in sample:
|
||||
return Dataset(data)
|
||||
else:
|
||||
raise ValueError(
|
||||
@@ -92,54 +92,90 @@ def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
|
||||
)
|
||||
|
||||
|
||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
if getattr(args, "hf_dataset", None) is not None:
|
||||
import datasets
|
||||
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
|
||||
def load_subset(path):
|
||||
if not path.exists():
|
||||
return []
|
||||
with open(path, "r") as fid:
|
||||
data = [json.loads(l) for l in fid]
|
||||
return create_dataset(data, tokenizer)
|
||||
|
||||
hf_args = args.hf_dataset
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
text_feature = hf_args.get("text_feature")
|
||||
prompt_feature = hf_args.get("prompt_feature")
|
||||
completion_feature = hf_args.get("completion_feature")
|
||||
names = ("train", "valid", "test")
|
||||
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
||||
return train, valid, test
|
||||
|
||||
def create_hf_dataset(split: str = None):
|
||||
ds = datasets.load_dataset(
|
||||
dataset_name,
|
||||
split=split,
|
||||
**hf_args.get("config", {}),
|
||||
)
|
||||
if prompt_feature and completion_feature:
|
||||
return CompletionsDataset(
|
||||
ds, tokenizer, prompt_feature, completion_feature
|
||||
)
|
||||
elif text_feature:
|
||||
return Dataset(train_ds, text_key=text_feature)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Specify either a prompt and completion feature or a text "
|
||||
"feature for the Hugging Face dataset."
|
||||
)
|
||||
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(split=train_split)
|
||||
valid = create_hf_dataset(split=valid_split)
|
||||
else:
|
||||
train, valid = [], []
|
||||
if args.test:
|
||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
||||
else:
|
||||
test = []
|
||||
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
|
||||
from datasets import exceptions, load_dataset
|
||||
|
||||
try:
|
||||
dataset = load_dataset(data_id)
|
||||
|
||||
else:
|
||||
names = ("train", "valid", "test")
|
||||
data_path = Path(args.data)
|
||||
|
||||
train, valid, test = [
|
||||
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
|
||||
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
|
||||
for n in names
|
||||
]
|
||||
|
||||
except exceptions.DatasetNotFoundError:
|
||||
raise ValueError(f"Not found Hugging Face dataset: {data_id} .")
|
||||
|
||||
return train, valid, test
|
||||
|
||||
|
||||
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
import datasets
|
||||
|
||||
hf_args = args.hf_dataset
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
text_feature = hf_args.get("text_feature")
|
||||
prompt_feature = hf_args.get("prompt_feature")
|
||||
completion_feature = hf_args.get("completion_feature")
|
||||
|
||||
def create_hf_dataset(split: str = None):
|
||||
ds = datasets.load_dataset(
|
||||
dataset_name,
|
||||
split=split,
|
||||
**hf_args.get("config", {}),
|
||||
)
|
||||
if prompt_feature and completion_feature:
|
||||
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
||||
elif text_feature:
|
||||
return Dataset(train_ds, text_key=text_feature)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Specify either a prompt and completion feature or a text "
|
||||
"feature for the Hugging Face dataset."
|
||||
)
|
||||
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(split=train_split)
|
||||
valid = create_hf_dataset(split=valid_split)
|
||||
else:
|
||||
train, valid = [], []
|
||||
if args.test:
|
||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
||||
else:
|
||||
test = []
|
||||
|
||||
return train, valid, test
|
||||
|
||||
|
||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
if getattr(args, "hf_dataset", None) is not None:
|
||||
train, valid, test = load_custom_hf_dataset(args, tokenizer)
|
||||
else:
|
||||
data_path = Path(args.data)
|
||||
if data_path.exists():
|
||||
train, valid, test = load_local_dataset(data_path, tokenizer)
|
||||
else:
|
||||
print(f"Loading Hugging Face dataset {args.data}.")
|
||||
train, valid, test = load_hf_dataset(args.data, tokenizer)
|
||||
|
||||
if args.train and len(train) == 0:
|
||||
raise ValueError(
|
||||
"Training set not found or empty. Must provide training set for fine-tuning."
|
||||
|
@@ -8,16 +8,17 @@ import mlx.nn as nn
|
||||
|
||||
class DoRALinear(nn.Module):
|
||||
@staticmethod
|
||||
def from_linear(
|
||||
def from_base(
|
||||
linear: nn.Linear,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
scale: float = 20.0,
|
||||
):
|
||||
# TODO support quantized weights in DoRALinear
|
||||
# TODO remove when input_dims and output_dims are attributes
|
||||
# on linear and quantized linear
|
||||
output_dims, input_dims = linear.weight.shape
|
||||
if isinstance(linear, nn.QuantizedLinear):
|
||||
raise ValueError("DoRALinear does not yet support quantization.")
|
||||
input_dims *= 32 // linear.bits
|
||||
dora_lin = DoRALinear(
|
||||
input_dims=input_dims,
|
||||
output_dims=output_dims,
|
||||
@@ -25,19 +26,19 @@ class DoRALinear(nn.Module):
|
||||
dropout=dropout,
|
||||
scale=scale,
|
||||
)
|
||||
dora_lin.linear = linear
|
||||
dora_lin.set_linear(linear)
|
||||
return dora_lin
|
||||
|
||||
def to_linear(self, de_quantize: bool = False):
|
||||
def fuse(self, de_quantize: bool = False):
|
||||
linear = self.linear
|
||||
bias = "bias" in linear
|
||||
weight = linear.weight
|
||||
weight = self._dequantized_weight()
|
||||
|
||||
# Use the same type as the linear weight if not quantized
|
||||
# Use the same type as the linear weight
|
||||
dtype = weight.dtype
|
||||
|
||||
output_dims, input_dims = weight.shape
|
||||
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
|
||||
fused_linear = nn.Linear(input_dims, output_dims, bias=False)
|
||||
|
||||
lora_b = (self.scale * self.lora_b.T).astype(dtype)
|
||||
lora_a = self.lora_a.T.astype(dtype)
|
||||
@@ -47,6 +48,13 @@ class DoRALinear(nn.Module):
|
||||
|
||||
if bias:
|
||||
fused_linear.bias = linear.bias
|
||||
|
||||
if self._is_quantized() and not de_quantize:
|
||||
fused_linear = nn.QuantizedLinear.from_linear(
|
||||
fused_linear,
|
||||
linear.group_size,
|
||||
linear.bits,
|
||||
)
|
||||
return fused_linear
|
||||
|
||||
def __init__(
|
||||
@@ -61,7 +69,7 @@ class DoRALinear(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
# Regular linear layer weights
|
||||
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
|
||||
self.set_linear(nn.Linear(input_dims, output_dims, bias=bias))
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
# Scale for low-rank update
|
||||
@@ -75,21 +83,146 @@ class DoRALinear(nn.Module):
|
||||
shape=(input_dims, r),
|
||||
)
|
||||
self.lora_b = mx.zeros(shape=(r, output_dims))
|
||||
self.m = mx.linalg.norm(self.linear.weight, axis=1)
|
||||
|
||||
def set_linear(self, linear):
|
||||
"""
|
||||
Set the self.linear layer and recompute self.m.
|
||||
"""
|
||||
self.linear = linear
|
||||
self.m = mx.linalg.norm(self._dequantized_weight().astype(mx.float32), axis=1)
|
||||
|
||||
def _dequantized_weight(self):
|
||||
"""
|
||||
Return the weight of linear layer and dequantize it if is quantized
|
||||
"""
|
||||
weight = self.linear.weight
|
||||
if self._is_quantized():
|
||||
weight = mx.dequantize(
|
||||
weight,
|
||||
self.linear.scales,
|
||||
self.linear.biases,
|
||||
self.linear.group_size,
|
||||
self.linear.bits,
|
||||
)
|
||||
return weight
|
||||
|
||||
def _is_quantized(self):
|
||||
return isinstance(self.linear, nn.QuantizedLinear)
|
||||
|
||||
def __call__(self, x):
|
||||
# Regular LoRA (without a bias)
|
||||
y = x @ self.linear.weight.T
|
||||
w = self._dequantized_weight()
|
||||
y = x @ w.T
|
||||
|
||||
z = (self.dropout(x) @ self.lora_a) @ self.lora_b
|
||||
out = y + (self.scale * z).astype(x.dtype)
|
||||
|
||||
# Compute the norm of the adapted weights
|
||||
adapted = self.linear.weight + (self.scale * self.lora_b.T) @ self.lora_a.T
|
||||
adapted = w + (self.scale * self.lora_b.T) @ self.lora_a.T
|
||||
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=1))
|
||||
|
||||
# Remove the norm and scale by the learned magnitude
|
||||
out = (self.m / denom).astype(x.dtype) * out
|
||||
|
||||
if "bias" in self.linear:
|
||||
out = out + self.linear.bias
|
||||
return out
|
||||
|
||||
|
||||
class DoRAEmbedding(nn.Module):
|
||||
def from_base(
|
||||
embedding: nn.Embedding,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
scale: float = 20.0,
|
||||
):
|
||||
num_embeddings, dims = embedding.weight.shape
|
||||
|
||||
# TODO support quantized weights in DoRALinear
|
||||
if isinstance(embedding, nn.QuantizedLinear):
|
||||
raise ValueError("DoRAEmbedding does not yet support quantization.")
|
||||
dora_embedding = DoRAEmbedding(
|
||||
num_embeddings=num_embeddings,
|
||||
dims=dims,
|
||||
r=r,
|
||||
dropout=dropout,
|
||||
scale=scale,
|
||||
)
|
||||
dora_embedding.set_embedding(embedding)
|
||||
return dora_embedding
|
||||
|
||||
def fuse(self, de_quantize: bool = False):
|
||||
embedding = self.embedding
|
||||
weight = embedding.weight
|
||||
|
||||
# Use the same type as the linear weight if not quantized
|
||||
dtype = weight.dtype
|
||||
|
||||
num_embeddings, dims = weight.shape
|
||||
fused_embedding = nn.Embedding(num_embeddings, dims)
|
||||
|
||||
lora_a = (self.scale * self.lora_a).astype(dtype)
|
||||
lora_b = self.lora_b.astype(dtype)
|
||||
weight = weight + lora_a @ lora_b
|
||||
norm_scale = self.m / mx.linalg.norm(weight, axis=1)
|
||||
fused_embedding.weight = norm_scale[:, None] * weight
|
||||
|
||||
return fused_embedding
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
dims: int,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
scale: float = 20.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Regular embedding layer weights
|
||||
self.set_embedding(nn.Embedding(num_embeddings, dims))
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
# Scale for low-rank update
|
||||
self.scale = scale
|
||||
|
||||
# Low rank lora weights
|
||||
scale = 1 / math.sqrt(num_embeddings)
|
||||
self.lora_a = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(num_embeddings, r),
|
||||
)
|
||||
self.lora_b = mx.zeros(shape=(r, dims))
|
||||
|
||||
def set_embedding(self, embedding: nn.Module):
|
||||
self.embedding = embedding
|
||||
self.m = mx.linalg.norm(embedding.weight, axis=1)
|
||||
|
||||
def __call__(self, x):
|
||||
y = self.embedding(x)
|
||||
z = self.scale * self.lora_a[x] @ self.lora_b
|
||||
out = y + self.dropout(z).astype(y.dtype)
|
||||
|
||||
# Compute the norm of the adapted weights for the individual embeddings
|
||||
adapted = y + z
|
||||
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=-1))
|
||||
|
||||
# Remove the norm and scale by the learned magnitude
|
||||
out = (self.m[x] / denom)[..., None] * out
|
||||
|
||||
return out
|
||||
|
||||
def as_linear(self, x):
|
||||
y = self.embedding.as_linear(x)
|
||||
z = (self.dropout(x) @ self.lora_b.T) @ self.lora_a.T
|
||||
out = y + (self.scale * z).astype(x.dtype)
|
||||
|
||||
# Compute the norm of the adapted weights
|
||||
adapted = self.embedding.weight + (self.scale * self.lora_a) @ self.lora_b
|
||||
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=1))
|
||||
|
||||
# Remove the norm and scale by the learned magnitude
|
||||
out = (self.m / denom) * out
|
||||
|
||||
if "bias" in self.linear:
|
||||
out = out + self.linear.bias
|
||||
return out
|
||||
|
@@ -10,7 +10,7 @@ from ..models.switch_layers import QuantizedSwitchLinear, SwitchLinear
|
||||
|
||||
class LoRALinear(nn.Module):
|
||||
@staticmethod
|
||||
def from_linear(
|
||||
def from_base(
|
||||
linear: nn.Linear,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
@@ -31,7 +31,7 @@ class LoRALinear(nn.Module):
|
||||
lora_lin.linear = linear
|
||||
return lora_lin
|
||||
|
||||
def to_linear(self, de_quantize: bool = False):
|
||||
def fuse(self, de_quantize: bool = False):
|
||||
linear = self.linear
|
||||
bias = "bias" in linear
|
||||
weight = linear.weight
|
||||
@@ -41,7 +41,7 @@ class LoRALinear(nn.Module):
|
||||
dtype = weight.dtype
|
||||
|
||||
if is_quantized:
|
||||
dtype = mx.float16
|
||||
dtype = linear.scales.dtype
|
||||
weight = mx.dequantize(
|
||||
weight,
|
||||
linear.scales,
|
||||
@@ -103,7 +103,7 @@ class LoRALinear(nn.Module):
|
||||
|
||||
class LoRASwitchLinear(nn.Module):
|
||||
@staticmethod
|
||||
def from_linear(
|
||||
def from_base(
|
||||
linear: nn.Module,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
@@ -120,7 +120,7 @@ class LoRASwitchLinear(nn.Module):
|
||||
lora_lin.linear = linear
|
||||
return lora_lin
|
||||
|
||||
def to_linear(self, de_quantize: bool = False):
|
||||
def fuse(self, de_quantize: bool = False):
|
||||
linear = self.linear
|
||||
bias = "bias" in linear
|
||||
weight = linear.weight
|
||||
@@ -191,3 +191,95 @@ class LoRASwitchLinear(nn.Module):
|
||||
z = z[..., None, :] @ self.lora_b[indices].swapaxes(-2, -1)
|
||||
|
||||
return y + (self.scale * z).astype(x.dtype)
|
||||
|
||||
|
||||
class LoRAEmbedding(nn.Module):
|
||||
@staticmethod
|
||||
def from_base(
|
||||
embedding: nn.Embedding,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
scale: float = 20.0,
|
||||
):
|
||||
num_embeddings, dims = embedding.weight.shape
|
||||
if isinstance(embedding, nn.QuantizedEmbedding):
|
||||
dims *= 32 // embedding.bits
|
||||
lora_embedding = LoRAEmbedding(
|
||||
num_embeddings=num_embeddings,
|
||||
dims=dims,
|
||||
r=r,
|
||||
dropout=dropout,
|
||||
scale=scale,
|
||||
)
|
||||
lora_embedding.embedding = embedding
|
||||
return lora_embedding
|
||||
|
||||
def fuse(self, de_quantize: bool = False):
|
||||
embedding = self.embedding
|
||||
weight = embedding.weight
|
||||
is_quantized = isinstance(embedding, nn.QuantizedEmbedding)
|
||||
|
||||
# Use the same type as the linear weight if not quantized
|
||||
dtype = weight.dtype
|
||||
|
||||
if is_quantized:
|
||||
dtype = embedding.scales.dtype
|
||||
weight = mx.dequantize(
|
||||
weight,
|
||||
embedding.scales,
|
||||
embedding.biases,
|
||||
embedding.group_size,
|
||||
embedding.bits,
|
||||
)
|
||||
num_embeddings, dims = weight.shape
|
||||
fused_embedding = nn.Embedding(num_embeddings, dims)
|
||||
|
||||
lora_a = (self.scale * self.lora_a).astype(dtype)
|
||||
lora_b = self.lora_b.astype(dtype)
|
||||
fused_embedding.weight = weight + lora_a @ lora_b
|
||||
|
||||
if is_quantized and not de_quantize:
|
||||
fused_embedding = nn.QuantizedEmbedding.from_embedding(
|
||||
fused_embedding,
|
||||
embedding.group_size,
|
||||
embedding.bits,
|
||||
)
|
||||
|
||||
return fused_embedding
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
dims: int,
|
||||
r: int = 8,
|
||||
dropout: float = 0.0,
|
||||
scale: float = 20.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Regular embedding layer
|
||||
self.embedding = nn.Embedding(num_embeddings, dims)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
# Scale for low-rank update
|
||||
self.scale = scale
|
||||
|
||||
# Low rank lora weights
|
||||
scale = 1 / math.sqrt(num_embeddings)
|
||||
self.lora_a = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(num_embeddings, r),
|
||||
)
|
||||
self.lora_b = mx.zeros(shape=(r, dims))
|
||||
|
||||
def __call__(self, x):
|
||||
y = self.embedding(x)
|
||||
z = self.dropout(self.lora_a[x] @ self.lora_b)
|
||||
out = y + (self.scale * z).astype(y.dtype)
|
||||
return out
|
||||
|
||||
def as_linear(self, x):
|
||||
y = self.embedding.as_linear(x)
|
||||
z = (self.dropout(x) @ self.lora_b.T) @ self.lora_a.T
|
||||
return y + (self.scale * z).astype(x.dtype)
|
||||
|
@@ -1,5 +1,7 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import glob
|
||||
import shutil
|
||||
import time
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
@@ -8,6 +10,7 @@ from typing import Union
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
from mlx.nn.utils import average_gradients
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
|
||||
@@ -141,9 +144,16 @@ def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False)
|
||||
f" examples but only has {len(dataset)}."
|
||||
)
|
||||
|
||||
# If running in distributed mode (N machines) then each one should skip N-1
|
||||
# samples
|
||||
step = mx.distributed.init().size()
|
||||
if batch_size % step != 0:
|
||||
raise ValueError("The batch size must be divisible by the number of workers")
|
||||
|
||||
# Make the batches:
|
||||
batch_idx = [
|
||||
idx[i : i + batch_size] for i in range(0, len(idx) - batch_size + 1, batch_size)
|
||||
idx[i : i + batch_size : step]
|
||||
for i in range(0, len(idx) - batch_size + 1, batch_size)
|
||||
]
|
||||
|
||||
while True:
|
||||
@@ -152,9 +162,7 @@ def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False)
|
||||
# Encode batch
|
||||
batch = [tokenizer.encode(dataset[j]) for j in batch_idx[i]]
|
||||
for b in batch:
|
||||
if b[-1] == tokenizer.eos_token_id:
|
||||
print("[WARNING] Example already has an EOS token appended")
|
||||
else:
|
||||
if b[-1] != tokenizer.eos_token_id:
|
||||
b.append(tokenizer.eos_token_id)
|
||||
|
||||
lengths = [len(x) for x in batch]
|
||||
@@ -171,9 +179,9 @@ def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False)
|
||||
max_length_in_batch = pad_to * ((max(lengths) + pad_to - 1) // pad_to)
|
||||
max_length_in_batch = min(max_length_in_batch, max_seq_length)
|
||||
|
||||
batch_arr = np.zeros((batch_size, max_length_in_batch), np.int32)
|
||||
batch_arr = np.zeros((batch_size // step, max_length_in_batch), np.int32)
|
||||
|
||||
for j in range(batch_size):
|
||||
for j in range(batch_size // step):
|
||||
truncated_length = min(lengths[j], max_seq_length)
|
||||
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
|
||||
lengths[j] = (
|
||||
@@ -197,7 +205,7 @@ def evaluate(
|
||||
loss: callable = default_loss,
|
||||
iterate_batches: callable = iterate_batches,
|
||||
):
|
||||
all_losses = []
|
||||
all_losses = 0
|
||||
ntokens = 0
|
||||
|
||||
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
|
||||
@@ -212,10 +220,14 @@ def evaluate(
|
||||
),
|
||||
):
|
||||
losses, toks = loss(model, *batch)
|
||||
all_losses.append((losses * toks).item())
|
||||
ntokens += toks.item()
|
||||
all_losses += losses * toks
|
||||
ntokens += toks
|
||||
mx.eval(all_losses, ntokens)
|
||||
|
||||
return np.sum(all_losses) / ntokens
|
||||
all_losses = mx.distributed.all_sum(all_losses)
|
||||
ntokens = mx.distributed.all_sum(ntokens)
|
||||
|
||||
return (all_losses / ntokens).item()
|
||||
|
||||
|
||||
class TrainingCallback:
|
||||
@@ -241,6 +253,11 @@ def train(
|
||||
training_callback: TrainingCallback = None,
|
||||
):
|
||||
print(f"Starting training..., iters: {args.iters}")
|
||||
world = mx.distributed.init()
|
||||
world_size = world.size()
|
||||
rank = world.rank()
|
||||
if world_size > 1:
|
||||
print(f"Node {rank} of {world_size}")
|
||||
|
||||
if args.grad_checkpoint:
|
||||
grad_checkpoint(model.layers[0])
|
||||
@@ -251,6 +268,9 @@ def train(
|
||||
# Forward and backward pass
|
||||
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
||||
|
||||
# All reduce the gradients if running in distributed mode
|
||||
grad = average_gradients(grad)
|
||||
|
||||
# Model update
|
||||
optimizer.update(model, grad)
|
||||
|
||||
@@ -258,8 +278,9 @@ def train(
|
||||
|
||||
loss_value_and_grad = nn.value_and_grad(model, loss)
|
||||
|
||||
losses = []
|
||||
losses = 0
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
trained_tokens = 0
|
||||
# Main training loop
|
||||
start = time.perf_counter()
|
||||
@@ -288,9 +309,13 @@ def train(
|
||||
iterate_batches=iterate_batches,
|
||||
)
|
||||
val_time = time.perf_counter() - stop
|
||||
print(
|
||||
f"Iter {it}: " f"Val loss {val_loss:.3f}, " f"Val took {val_time:.3f}s"
|
||||
)
|
||||
if rank == 0:
|
||||
print(
|
||||
f"Iter {it}: "
|
||||
f"Val loss {val_loss:.3f}, "
|
||||
f"Val took {val_time:.3f}s",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
if training_callback is not None:
|
||||
val_info = {
|
||||
@@ -303,30 +328,33 @@ def train(
|
||||
start = time.perf_counter()
|
||||
|
||||
lvalue, toks = step(batch)
|
||||
mx.eval(state, lvalue, toks)
|
||||
|
||||
# Record loss
|
||||
losses.append(lvalue.item())
|
||||
n_tokens += toks.item()
|
||||
losses += lvalue
|
||||
n_tokens += toks
|
||||
steps += 1
|
||||
mx.eval(state, losses, n_tokens)
|
||||
|
||||
# Report training loss if needed
|
||||
if it % args.steps_per_report == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
|
||||
train_loss = np.mean(losses)
|
||||
train_loss = mx.distributed.all_sum(losses).item()
|
||||
train_loss /= steps * mx.distributed.init().size()
|
||||
n_tokens = mx.distributed.all_sum(n_tokens).item()
|
||||
learning_rate = optimizer.learning_rate.item()
|
||||
it_sec = args.steps_per_report / (stop - start)
|
||||
tokens_sec = float(n_tokens) / (stop - start)
|
||||
trained_tokens += n_tokens
|
||||
peak_mem = mx.metal.get_peak_memory() / 2**30
|
||||
print(
|
||||
f"Iter {it}: Train loss {train_loss:.3f}, "
|
||||
f"Learning Rate {learning_rate:.3e}, "
|
||||
f"It/sec {it_sec:.3f}, "
|
||||
f"Tokens/sec {tokens_sec:.3f}, "
|
||||
f"Trained Tokens {trained_tokens}, "
|
||||
f"Peak mem {peak_mem:.3f} GB"
|
||||
)
|
||||
if rank == 0:
|
||||
print(
|
||||
f"Iter {it}: Train loss {train_loss:.3f}, "
|
||||
f"Learning Rate {learning_rate:.3e}, "
|
||||
f"It/sec {it_sec:.3f}, "
|
||||
f"Tokens/sec {tokens_sec:.3f}, "
|
||||
f"Trained Tokens {trained_tokens}, "
|
||||
f"Peak mem {peak_mem:.3f} GB",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
if training_callback is not None:
|
||||
train_info = {
|
||||
@@ -340,30 +368,25 @@ def train(
|
||||
}
|
||||
training_callback.on_train_loss_report(train_info)
|
||||
|
||||
losses = []
|
||||
losses = 0
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
start = time.perf_counter()
|
||||
|
||||
# Save adapter weights
|
||||
if it % args.steps_per_save == 0:
|
||||
save_adapter(model, args.adapter_file)
|
||||
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
|
||||
mx.save_safetensors(str(args.adapter_file), adapter_weights)
|
||||
checkpoint = (
|
||||
Path(args.adapter_file).parent / f"{it:07d}_adapters.safetensors"
|
||||
)
|
||||
save_adapter(model, checkpoint)
|
||||
mx.save_safetensors(str(checkpoint), adapter_weights)
|
||||
print(
|
||||
f"Iter {it}: Saved adapter weights to "
|
||||
f"{args.adapter_file} and {checkpoint}."
|
||||
)
|
||||
|
||||
# save final adapter weights
|
||||
save_adapter(model, args.adapter_file)
|
||||
print(f"Saved final adapter weights to {args.adapter_file}.")
|
||||
|
||||
|
||||
def save_adapter(
|
||||
model: nn.Module,
|
||||
adapter_file: Union[str, Path],
|
||||
):
|
||||
flattened_tree = tree_flatten(model.trainable_parameters())
|
||||
mx.save_safetensors(str(adapter_file), dict(flattened_tree))
|
||||
# Save final weights
|
||||
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
|
||||
mx.save_safetensors(str(args.adapter_file), adapter_weights)
|
||||
print(f"Saved final weights to {args.adapter_file}.")
|
||||
|
@@ -10,8 +10,8 @@ import mlx.optimizers as opt
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
|
||||
from ..models.switch_layers import QuantizedSwitchLinear, SwitchLinear
|
||||
from .dora import DoRALinear
|
||||
from .lora import LoRALinear, LoRASwitchLinear
|
||||
from .dora import DoRAEmbedding, DoRALinear
|
||||
from .lora import LoRAEmbedding, LoRALinear, LoRASwitchLinear
|
||||
|
||||
|
||||
def build_schedule(schedule_config: Dict):
|
||||
@@ -36,7 +36,7 @@ def build_schedule(schedule_config: Dict):
|
||||
|
||||
def linear_to_lora_layers(
|
||||
model: nn.Module,
|
||||
num_lora_layers: int,
|
||||
num_layers: int,
|
||||
config: Dict,
|
||||
use_dora: bool = False,
|
||||
):
|
||||
@@ -45,23 +45,17 @@ def linear_to_lora_layers(
|
||||
|
||||
Args:
|
||||
model (nn.Module): The neural network model.
|
||||
num_lora_layers (int): The number of blocks to convert to lora layers
|
||||
num_layers (int): The number of blocks to convert to lora layers
|
||||
starting from the last layer.
|
||||
config (dict): More configuration parameters for LoRA, including the
|
||||
rank, scale, and optional layer keys.
|
||||
use_dora (bool): If True, uses DoRA instead of LoRA.
|
||||
Default: ``False``
|
||||
"""
|
||||
|
||||
num_layers = len(model.layers)
|
||||
|
||||
if num_lora_layers < 0:
|
||||
num_lora_layers = num_layers
|
||||
|
||||
if num_lora_layers > num_layers:
|
||||
if num_layers > len(model.layers):
|
||||
raise ValueError(
|
||||
f"Requested {num_lora_layers} LoRA layers "
|
||||
f"but the model only has {num_layers} layers."
|
||||
f"Requested {num_layers} LoRA layers "
|
||||
f"but the model only has {len(model.layers)} layers."
|
||||
)
|
||||
|
||||
def to_lora(layer):
|
||||
@@ -71,12 +65,14 @@ def linear_to_lora_layers(
|
||||
if use_dora:
|
||||
raise ValueError(f"{type(layer).__name__} doesn't support DoRA yet.")
|
||||
LoRALayer = LoRASwitchLinear
|
||||
elif isinstance(layer, (nn.Embedding, nn.QuantizedEmbedding)):
|
||||
LoRALayer = DoRAEmbedding if use_dora else LoRAEmbedding
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Can't convert layer of type {type(layer).__name__} to LoRA"
|
||||
)
|
||||
|
||||
return LoRALayer.from_linear(
|
||||
return LoRALayer.from_base(
|
||||
layer,
|
||||
r=config["rank"],
|
||||
scale=config["scale"],
|
||||
@@ -91,17 +87,20 @@ def linear_to_lora_layers(
|
||||
"llama",
|
||||
"phi",
|
||||
"mixtral",
|
||||
"nemotron",
|
||||
"stablelm",
|
||||
"qwen2",
|
||||
"qwen2_moe",
|
||||
"phimoe",
|
||||
"gemma",
|
||||
"gemma2",
|
||||
"starcoder2",
|
||||
"cohere",
|
||||
"minicpm",
|
||||
"deepseek",
|
||||
]:
|
||||
keys = set(["self_attn.q_proj", "self_attn.v_proj"])
|
||||
if model.model_type == "mixtral":
|
||||
if model.model_type in ["mixtral", "phimoe"]:
|
||||
keys.add("block_sparse_moe.gate")
|
||||
if model.model_type == "qwen2_moe":
|
||||
keys.add("mlp.gate")
|
||||
@@ -111,6 +110,8 @@ def linear_to_lora_layers(
|
||||
keys = set(["attn.c_attn"])
|
||||
elif model.model_type == "gpt2":
|
||||
keys = set(["attn.c_attn"])
|
||||
elif model.model_type == "gpt_neox":
|
||||
keys = set(["attention.query_key_value"])
|
||||
elif model.model_type == "olmo":
|
||||
keys = set(["att_proj"])
|
||||
elif model.model_type == "openelm":
|
||||
@@ -123,17 +124,41 @@ def linear_to_lora_layers(
|
||||
keys = set(["norm_attn_norm.attn.Wqkv", "ffn.router.layer"])
|
||||
elif model.model_type == "internlm2":
|
||||
keys = set(["attention.wqkv", "attention.wo"])
|
||||
elif model.model_type == "deepseek_v2":
|
||||
keys = set(
|
||||
[
|
||||
"self_attn.q_proj",
|
||||
"self_attn.q_a_proj",
|
||||
"self_attn.q_b_proj",
|
||||
"self_attn.kv_a_proj_with_mqa",
|
||||
"self_attn.kv_b_proj",
|
||||
]
|
||||
)
|
||||
elif model.model_type == "mamba":
|
||||
keys = set(
|
||||
[
|
||||
"mixer.in_proj",
|
||||
"mixer.x_proj",
|
||||
"mixer.dt_proj",
|
||||
"mixer.out_proj",
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Lora does not support {model.model_type}")
|
||||
|
||||
for l in model.layers[num_layers - num_lora_layers :]:
|
||||
for l in model.layers[-min(num_layers, 0) :]:
|
||||
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in keys]
|
||||
l.update_modules(tree_unflatten(lora_layers))
|
||||
if lora_layers:
|
||||
l.update_modules(tree_unflatten(lora_layers))
|
||||
|
||||
lora_modules = [(k, to_lora(m)) for k, m in model.named_modules() if k in keys]
|
||||
if lora_modules:
|
||||
model.update_modules(tree_unflatten(lora_modules))
|
||||
|
||||
|
||||
def apply_lora_layers(model: nn.Module, adapter_path: str) -> nn.Module:
|
||||
def load_adapters(model: nn.Module, adapter_path: str) -> nn.Module:
|
||||
"""
|
||||
Apply LoRA layers to the model.
|
||||
Load any fine-tuned adapters / layers.
|
||||
|
||||
Args:
|
||||
model (nn.Module): The neural network model.
|
||||
@@ -147,12 +172,14 @@ def apply_lora_layers(model: nn.Module, adapter_path: str) -> nn.Module:
|
||||
raise FileNotFoundError(f"The adapter path does not exist: {adapter_path}")
|
||||
with open(adapter_path / "adapter_config.json", "r") as fid:
|
||||
config = types.SimpleNamespace(**json.load(fid))
|
||||
linear_to_lora_layers(
|
||||
model,
|
||||
config.lora_layers,
|
||||
config.lora_parameters,
|
||||
getattr(config, "use_dora", False),
|
||||
)
|
||||
fine_tune_type = getattr(config, "fine_tune_type", "lora")
|
||||
if fine_tune_type != "full":
|
||||
linear_to_lora_layers(
|
||||
model,
|
||||
config.num_layers,
|
||||
config.lora_parameters,
|
||||
use_dora=(fine_tune_type == "dora"),
|
||||
)
|
||||
model.load_weights(str(adapter_path / "adapters.safetensors"), strict=False)
|
||||
return model
|
||||
|
||||
|
@@ -1,5 +1,6 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import contextlib
|
||||
import copy
|
||||
import glob
|
||||
import importlib
|
||||
@@ -9,21 +10,20 @@ import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
from textwrap import dedent
|
||||
from typing import Any, Callable, Dict, Generator, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Type, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
||||
from mlx.utils import tree_flatten
|
||||
from mlx.utils import tree_flatten, tree_reduce
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
# Local imports
|
||||
from .models.base import KVCache
|
||||
from .sample_utils import top_p_sampling
|
||||
from .models import cache
|
||||
from .sample_utils import categorical_sampling, min_p_sampling, top_p_sampling
|
||||
from .tokenizer_utils import TokenizerWrapper, load_tokenizer
|
||||
from .tuner.utils import apply_lora_layers
|
||||
from .tuner.utils import dequantize as dequantize_model
|
||||
from .tuner.utils import load_adapters
|
||||
|
||||
# Constants
|
||||
MODEL_REMAPPING = {
|
||||
@@ -40,6 +40,40 @@ class ModelNotFoundError(Exception):
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def wired_limit(model: nn.Module, streams: Optional[List[mx.Stream]] = None):
|
||||
"""
|
||||
A context manager to temporarily change the wired limit.
|
||||
|
||||
Note, the wired limit should not be changed during an async eval. If an
|
||||
async eval could be running pass in the streams to synchronize with prior
|
||||
to exiting the context manager.
|
||||
"""
|
||||
model_bytes = tree_reduce(
|
||||
lambda acc, x: acc + x.nbytes if isinstance(x, mx.array) else acc, model, 0
|
||||
)
|
||||
max_rec_size = mx.metal.device_info()["max_recommended_working_set_size"]
|
||||
if model_bytes > 0.9 * max_rec_size:
|
||||
model_mb = model_bytes // 2**20
|
||||
max_rec_mb = max_rec_size // 2**20
|
||||
print(
|
||||
"[WARNING] Generating with a model that requires {model_mb} MB "
|
||||
"which is close to the maximum recommended size of {max_rec_mb} "
|
||||
"MB. This can be slow. See the documentation for possible work-arounds: "
|
||||
"https://github.com/ml-explore/mlx-examples/tree/main/llms#large-models"
|
||||
)
|
||||
old_limit = mx.metal.set_wired_limit(max_rec_size)
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if streams is not None:
|
||||
for s in streams:
|
||||
mx.synchronize(s)
|
||||
else:
|
||||
mx.synchronize()
|
||||
mx.metal.set_wired_limit(old_limit)
|
||||
|
||||
|
||||
def _get_classes(config: dict):
|
||||
"""
|
||||
Retrieve the model and model args classes based on the configuration.
|
||||
@@ -91,7 +125,7 @@ def get_model_path(path_or_hf_repo: str, revision: Optional[str] = None) -> Path
|
||||
],
|
||||
)
|
||||
)
|
||||
except RepositoryNotFoundError:
|
||||
except:
|
||||
raise ModelNotFoundError(
|
||||
f"Model not found for path or HF repo: {path_or_hf_repo}.\n"
|
||||
"Please make sure you specified the local path or Hugging Face"
|
||||
@@ -102,7 +136,7 @@ def get_model_path(path_or_hf_repo: str, revision: Optional[str] = None) -> Path
|
||||
return model_path
|
||||
|
||||
|
||||
def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: float):
|
||||
def apply_repetition_penalty(logits: mx.array, tokens: mx.array, penalty: float):
|
||||
"""
|
||||
Apply repetition penalty to specific logits based on the given context.
|
||||
|
||||
@@ -110,22 +144,33 @@ def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: f
|
||||
|
||||
Args:
|
||||
logits (mx.array): The logits produced by the language model.
|
||||
generated_tokens (any): A list of N previous tokens.
|
||||
tokens (mx.array): A list of N previous tokens.
|
||||
penalty (float): The repetition penalty factor to be applied.
|
||||
|
||||
Returns:
|
||||
logits (mx.array): Logits with repetition penalty applied to generated tokens.
|
||||
"""
|
||||
if len(generated_tokens) > 0:
|
||||
indices = mx.array([token for token in generated_tokens])
|
||||
selected_logits = logits[:, indices]
|
||||
if len(tokens) > 0:
|
||||
selected_logits = logits[:, tokens]
|
||||
selected_logits = mx.where(
|
||||
selected_logits < 0, selected_logits * penalty, selected_logits / penalty
|
||||
)
|
||||
logits[:, indices] = selected_logits
|
||||
logits[:, tokens] = selected_logits
|
||||
return logits
|
||||
|
||||
|
||||
def maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits):
|
||||
if (
|
||||
kv_bits is not None
|
||||
and not isinstance(prompt_cache[0], cache.QuantizedKVCache)
|
||||
and prompt_cache[0].offset > quantized_kv_start
|
||||
):
|
||||
for i in range(len(prompt_cache)):
|
||||
prompt_cache[i] = prompt_cache[i].to_quantized(
|
||||
group_size=kv_group_size, bits=kv_bits
|
||||
)
|
||||
|
||||
|
||||
def generate_step(
|
||||
prompt: mx.array,
|
||||
model: nn.Module,
|
||||
@@ -133,7 +178,16 @@ def generate_step(
|
||||
repetition_penalty: Optional[float] = None,
|
||||
repetition_context_size: Optional[int] = 20,
|
||||
top_p: float = 1.0,
|
||||
min_p: float = 0.0,
|
||||
min_tokens_to_keep: int = 1,
|
||||
prefill_step_size: int = 512,
|
||||
max_kv_size: Optional[int] = None,
|
||||
prompt_cache: Optional[Any] = None,
|
||||
logit_bias: Optional[Dict[int, float]] = None,
|
||||
logits_processor: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
|
||||
kv_bits: Optional[int] = None,
|
||||
kv_group_size: int = 64,
|
||||
quantized_kv_start: int = 0,
|
||||
) -> Generator[Tuple[mx.array, mx.array], None, None]:
|
||||
"""
|
||||
A generator producing token ids based on the given prompt from the model.
|
||||
@@ -149,7 +203,24 @@ def generate_step(
|
||||
consider for repetition penalty. Default: ``20``.
|
||||
top_p (float, optional): Nulceus sampling, higher means model considers
|
||||
more less likely words.
|
||||
min_p (float, optional): The minimum value (scaled by the top token's
|
||||
probability) that a token probability must have to be considered.
|
||||
min_tokens_to_keep (int, optional): Minimum number of tokens that cannot
|
||||
be filtered by min_p sampling.
|
||||
prefill_step_size (int): Step size for processing the prompt.
|
||||
max_kv_size (int, optional): Maximum size of the key-value cache. Old
|
||||
entries (except the first 4 tokens) will be overwritten.
|
||||
prompt_cache (List[Any], optional): A pre-computed prompt cache. Note, if
|
||||
provided, the cache will be updated in place.
|
||||
logit_bias (dictionary, optional): Additive logit bias.
|
||||
logits_processor (List[Callable[[mx.array, mx.array], mx.array]], optional):
|
||||
A list of functions that take tokens and logits and return the processed
|
||||
logits. Default: ``None``.
|
||||
kv_bits (int, optional): Number of bits to use for KV cache quantization.
|
||||
None implies no cache quantization. Default: ``None``.
|
||||
kv_group_size (int): Group size for KV cache quantization. Default: ``64``.
|
||||
quantized_kv_start (int): Step to begin using a quantized KV cache.
|
||||
when ``kv_bits`` is non-None. Default: ``0``.
|
||||
|
||||
Yields:
|
||||
Generator[Tuple[mx.array, mx.array], None, None]: A generator producing
|
||||
@@ -157,10 +228,6 @@ def generate_step(
|
||||
"""
|
||||
|
||||
def sample(logits: mx.array) -> Tuple[mx.array, float]:
|
||||
if logit_bias:
|
||||
indices = mx.array(list(logit_bias.keys()))
|
||||
values = mx.array(list(logit_bias.values()))
|
||||
logits[:, indices] += values
|
||||
logprobs = logits - mx.logsumexp(logits)
|
||||
|
||||
if temp == 0:
|
||||
@@ -168,8 +235,10 @@ def generate_step(
|
||||
else:
|
||||
if top_p > 0 and top_p < 1.0:
|
||||
token = top_p_sampling(logits, top_p, temp)
|
||||
elif min_p != 0.0:
|
||||
token = min_p_sampling(logits, min_p, min_tokens_to_keep, temp)
|
||||
else:
|
||||
token = mx.random.categorical(logits * (1 / temp))
|
||||
token = categorical_sampling(logits, temp)
|
||||
|
||||
return token, logprobs
|
||||
|
||||
@@ -180,45 +249,75 @@ def generate_step(
|
||||
f"repetition_penalty must be a non-negative float, got {repetition_penalty}"
|
||||
)
|
||||
|
||||
logits_processor = logits_processor or []
|
||||
|
||||
if repetition_penalty:
|
||||
|
||||
def repetition_penalty_processor(tokens, logits):
|
||||
return apply_repetition_penalty(
|
||||
logits, tokens[-repetition_context_size:], repetition_penalty
|
||||
)
|
||||
|
||||
logits_processor.append(repetition_penalty_processor)
|
||||
|
||||
if logit_bias:
|
||||
indices = mx.array(list(logit_bias.keys()))
|
||||
values = mx.array(list(logit_bias.values()))
|
||||
|
||||
def logit_bias_processor(_, logits):
|
||||
logits[:, indices] += values
|
||||
return logits
|
||||
|
||||
logits_processor.append(logit_bias_processor)
|
||||
|
||||
y = prompt
|
||||
kv_heads = (
|
||||
[model.n_kv_heads] * len(model.layers)
|
||||
if isinstance(model.n_kv_heads, int)
|
||||
else model.n_kv_heads
|
||||
)
|
||||
cache = [KVCache(model.head_dim, n) for n in kv_heads]
|
||||
tokens = None
|
||||
|
||||
repetition_context = prompt.tolist()
|
||||
|
||||
if repetition_context_size:
|
||||
repetition_context = repetition_context[-repetition_context_size:]
|
||||
# Create the KV cache for generation
|
||||
if prompt_cache is None:
|
||||
prompt_cache = cache.make_prompt_cache(
|
||||
model,
|
||||
max_kv_size=max_kv_size,
|
||||
)
|
||||
elif len(prompt_cache) != len(model.layers):
|
||||
raise ValueError("Wrong number of layers in the prompt cache.")
|
||||
|
||||
def _step(y):
|
||||
nonlocal repetition_context
|
||||
logits = model(y[None], cache=cache)
|
||||
|
||||
logits = model(y[None], cache=prompt_cache)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
if repetition_penalty:
|
||||
logits = apply_repetition_penalty(
|
||||
logits, repetition_context, repetition_penalty
|
||||
)
|
||||
y, logprobs = sample(logits)
|
||||
repetition_context.append(y.item())
|
||||
else:
|
||||
y, logprobs = sample(logits)
|
||||
if logits_processor:
|
||||
nonlocal tokens
|
||||
tokens = mx.concat([tokens, y]) if tokens is not None else y
|
||||
|
||||
if repetition_context_size:
|
||||
if len(repetition_context) > repetition_context_size:
|
||||
repetition_context = repetition_context[-repetition_context_size:]
|
||||
for processor in logits_processor:
|
||||
logits = processor(tokens, logits)
|
||||
|
||||
maybe_quantize_kv_cache(
|
||||
prompt_cache, quantized_kv_start, kv_group_size, kv_bits
|
||||
)
|
||||
|
||||
y, logprobs = sample(logits)
|
||||
return y, logprobs.squeeze(0)
|
||||
|
||||
while y.size > prefill_step_size:
|
||||
model(y[:prefill_step_size][None], cache=prompt_cache)
|
||||
mx.eval([c.state for c in prompt_cache])
|
||||
y = y[prefill_step_size:]
|
||||
mx.metal.clear_cache()
|
||||
|
||||
y, logprobs = _step(y)
|
||||
|
||||
mx.async_eval(y)
|
||||
mx.async_eval(y, logprobs)
|
||||
n = 0
|
||||
while True:
|
||||
next_y, next_logprobs = _step(y)
|
||||
mx.async_eval(next_y)
|
||||
mx.async_eval(next_y, next_logprobs)
|
||||
yield y.item(), logprobs
|
||||
if n % 256 == 0:
|
||||
mx.metal.clear_cache()
|
||||
n += 1
|
||||
y, logprobs = next_y, next_logprobs
|
||||
|
||||
|
||||
@@ -249,9 +348,9 @@ def stream_generate(
|
||||
detokenizer = tokenizer.detokenizer
|
||||
|
||||
detokenizer.reset()
|
||||
for (token, _), n in zip(
|
||||
generate_step(prompt_tokens, model, **kwargs),
|
||||
for n, (token, _) in zip(
|
||||
range(max_tokens),
|
||||
generate_step(prompt_tokens, model, **kwargs),
|
||||
):
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
@@ -298,44 +397,50 @@ def generate(
|
||||
prompt_tokens = mx.array(tokenizer.encode(prompt))
|
||||
detokenizer = tokenizer.detokenizer
|
||||
|
||||
tic = time.perf_counter()
|
||||
detokenizer.reset()
|
||||
with wired_limit(model):
|
||||
tic = time.perf_counter()
|
||||
detokenizer.reset()
|
||||
for n, (token, logprobs) in zip(
|
||||
range(max_tokens),
|
||||
generate_step(prompt_tokens, model, **kwargs),
|
||||
):
|
||||
if n == 0:
|
||||
prompt_time = time.perf_counter() - tic
|
||||
tic = time.perf_counter()
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
detokenizer.add_token(token)
|
||||
|
||||
for (token, logprobs), n in zip(
|
||||
generate_step(prompt_tokens, model, **kwargs),
|
||||
range(max_tokens),
|
||||
):
|
||||
if n == 0:
|
||||
prompt_time = time.perf_counter() - tic
|
||||
tic = time.perf_counter()
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
detokenizer.add_token(token)
|
||||
if verbose:
|
||||
if formatter:
|
||||
# We have to finalize so that the prob corresponds to the last segment
|
||||
detokenizer.finalize()
|
||||
with mx.stream(mx.cpu):
|
||||
prob = mx.exp(logprobs[token]).item()
|
||||
formatter(detokenizer.last_segment, prob)
|
||||
else:
|
||||
print(detokenizer.last_segment, end="", flush=True)
|
||||
|
||||
token_count = n + 1
|
||||
detokenizer.finalize()
|
||||
|
||||
if verbose:
|
||||
if formatter:
|
||||
# We have to finalize so that the prob corresponds to the last segment
|
||||
detokenizer.finalize()
|
||||
formatter(detokenizer.last_segment, mx.exp(logprobs[token]).item())
|
||||
else:
|
||||
print(detokenizer.last_segment, end="", flush=True)
|
||||
gen_time = time.perf_counter() - tic
|
||||
print(detokenizer.last_segment, flush=True)
|
||||
print("=" * 10)
|
||||
if token_count == 0:
|
||||
print("No tokens generated for this prompt")
|
||||
return
|
||||
prompt_tps = prompt_tokens.size / prompt_time
|
||||
gen_tps = (token_count - 1) / gen_time
|
||||
print(
|
||||
f"Prompt: {prompt_tokens.size} tokens, {prompt_tps:.3f} tokens-per-sec"
|
||||
)
|
||||
print(f"Generation: {token_count} tokens, {gen_tps:.3f} tokens-per-sec")
|
||||
peak_mem = mx.metal.get_peak_memory() / 2**30
|
||||
print(f"Peak memory: {peak_mem:.3f} GB")
|
||||
|
||||
token_count = n + 1
|
||||
detokenizer.finalize()
|
||||
|
||||
if verbose:
|
||||
gen_time = time.perf_counter() - tic
|
||||
print(detokenizer.last_segment, flush=True)
|
||||
print("=" * 10)
|
||||
if token_count == 0:
|
||||
print("No tokens generated for this prompt")
|
||||
return
|
||||
prompt_tps = prompt_tokens.size / prompt_time
|
||||
gen_tps = (token_count - 1) / gen_time
|
||||
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
|
||||
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
|
||||
|
||||
return detokenizer.text
|
||||
return detokenizer.text
|
||||
|
||||
|
||||
def load_config(model_path: Path) -> dict:
|
||||
@@ -352,6 +457,7 @@ def load_model(
|
||||
model_path: Path,
|
||||
lazy: bool = False,
|
||||
model_config: dict = {},
|
||||
get_model_classes: Callable[[dict], Tuple[Type[nn.Module], Type]] = _get_classes,
|
||||
) -> nn.Module:
|
||||
"""
|
||||
Load and initialize the model from a given path.
|
||||
@@ -361,8 +467,11 @@ def load_model(
|
||||
lazy (bool): If False eval the model parameters to make sure they are
|
||||
loaded in memory before returning, otherwise they will be loaded
|
||||
when needed. Default: ``False``
|
||||
model_config(dict, optional): Configuration parameters for the model.
|
||||
model_config (dict, optional): Configuration parameters for the model.
|
||||
Defaults to an empty dictionary.
|
||||
get_model_classes (Callable[[dict], Tuple[Type[nn.Module], Type]], optional):
|
||||
A function that returns the model class and model args class given a config.
|
||||
Defaults to the _get_classes function.
|
||||
|
||||
Returns:
|
||||
nn.Module: The loaded and initialized model.
|
||||
@@ -389,7 +498,7 @@ def load_model(
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf))
|
||||
|
||||
model_class, model_args_class = _get_classes(config=config)
|
||||
model_class, model_args_class = get_model_classes(config=config)
|
||||
|
||||
model_args = model_args_class.from_dict(config)
|
||||
model = model_class(model_args)
|
||||
@@ -451,7 +560,7 @@ def load(
|
||||
|
||||
model = load_model(model_path, lazy, model_config)
|
||||
if adapter_path is not None:
|
||||
model = apply_lora_layers(model, adapter_path)
|
||||
model = load_adapters(model, adapter_path)
|
||||
model.eval()
|
||||
tokenizer = load_tokenizer(model_path, tokenizer_config)
|
||||
|
||||
@@ -508,6 +617,7 @@ def upload_to_hub(path: str, upload_repo: str, hf_path: str):
|
||||
|
||||
card = ModelCard.load(hf_path)
|
||||
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
||||
card.data.base_model = hf_path
|
||||
card.text = dedent(
|
||||
f"""
|
||||
# {upload_repo}
|
||||
@@ -524,7 +634,16 @@ def upload_to_hub(path: str, upload_repo: str, hf_path: str):
|
||||
from mlx_lm import load, generate
|
||||
|
||||
model, tokenizer = load("{upload_repo}")
|
||||
response = generate(model, tokenizer, prompt="hello", verbose=True)
|
||||
|
||||
prompt="hello"
|
||||
|
||||
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
|
||||
messages = [{{"role": "user", "content": prompt}}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
|
||||
response = generate(model, tokenizer, prompt=prompt, verbose=True)
|
||||
```
|
||||
"""
|
||||
)
|
||||
@@ -614,6 +733,8 @@ def quantize_model(
|
||||
quantized_config = copy.deepcopy(config)
|
||||
nn.quantize(model, q_group_size, q_bits)
|
||||
quantized_config["quantization"] = {"group_size": q_group_size, "bits": q_bits}
|
||||
# support hf model tree #957
|
||||
quantized_config["quantization_config"] = quantized_config["quantization"]
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
@@ -653,12 +774,22 @@ def convert(
|
||||
revision: Optional[str] = None,
|
||||
dequantize: bool = False,
|
||||
):
|
||||
# Check the save path is empty
|
||||
if isinstance(mlx_path, str):
|
||||
mlx_path = Path(mlx_path)
|
||||
|
||||
if mlx_path.exists():
|
||||
raise ValueError(
|
||||
f"Cannot save to the path {mlx_path} as it already exists."
|
||||
" Please delete the file/directory or specify a new path to save to."
|
||||
)
|
||||
|
||||
print("[INFO] Loading")
|
||||
model_path = get_model_path(hf_path, revision=revision)
|
||||
model, config, tokenizer = fetch_from_hub(model_path, lazy=True)
|
||||
|
||||
weights = dict(tree_flatten(model.parameters()))
|
||||
dtype = mx.float16 if quantize else getattr(mx, dtype)
|
||||
dtype = getattr(mx, dtype)
|
||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||
|
||||
if quantize and dequantize:
|
||||
@@ -674,9 +805,6 @@ def convert(
|
||||
model = dequantize_model(model)
|
||||
weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
if isinstance(mlx_path, str):
|
||||
mlx_path = Path(mlx_path)
|
||||
|
||||
del model
|
||||
save_weights(mlx_path, weights, donate_weights=True)
|
||||
|
||||
|
@@ -10,7 +10,7 @@ with open(package_dir / "requirements.txt") as fid:
|
||||
requirements = [l.strip() for l in fid.readlines()]
|
||||
|
||||
sys.path.append(str(package_dir))
|
||||
from version import __version__
|
||||
from _version import __version__
|
||||
|
||||
setup(
|
||||
name="mlx-lm",
|
||||
@@ -31,6 +31,8 @@ setup(
|
||||
},
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"mlx_lm.cache_prompt = mlx_lm.cache_prompt:main",
|
||||
"mlx_lm.chat = mlx_lm.chat:main",
|
||||
"mlx_lm.convert = mlx_lm.convert:main",
|
||||
"mlx_lm.fuse = mlx_lm.fuse:main",
|
||||
"mlx_lm.generate = mlx_lm.generate:main",
|
||||
|
447
llms/tests/test_finetune.py
Normal file
447
llms/tests/test_finetune.py
Normal file
@@ -0,0 +1,447 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
import sys
|
||||
import unittest
|
||||
from contextlib import contextmanager
|
||||
from io import StringIO
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx.optimizers as opt
|
||||
from mlx.utils import tree_flatten
|
||||
from mlx_lm import lora, tuner
|
||||
from mlx_lm.tuner.dora import DoRAEmbedding, DoRALinear
|
||||
from mlx_lm.tuner.lora import LoRAEmbedding, LoRALinear
|
||||
from mlx_lm.tuner.trainer import evaluate
|
||||
from mlx_lm.tuner.utils import build_schedule
|
||||
|
||||
|
||||
@contextmanager
|
||||
def swapped_with_identity(obj, func):
|
||||
old_func = getattr(obj, func)
|
||||
setattr(obj, func, lambda x: x)
|
||||
yield
|
||||
setattr(obj, func, old_func)
|
||||
|
||||
|
||||
class TestLora(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.capturedOutput = StringIO()
|
||||
sys.stdout = self.capturedOutput
|
||||
|
||||
def tearDown(self):
|
||||
sys.stdout = sys.__stdout__
|
||||
|
||||
def test_llama(self):
|
||||
from mlx_lm.models import llama
|
||||
|
||||
args = llama.ModelArgs(
|
||||
model_type="llama",
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=2048,
|
||||
num_attention_heads=4,
|
||||
rms_norm_eps=1e-5,
|
||||
vocab_size=10_000,
|
||||
tie_word_embeddings=False,
|
||||
)
|
||||
|
||||
lora_layers = 4
|
||||
|
||||
def check_config(params, expected_trainable_parameters=None):
|
||||
n_keys = 2
|
||||
if "keys" in params:
|
||||
n_keys = len(params["keys"])
|
||||
model = llama.Model(args)
|
||||
model.freeze()
|
||||
tuner.utils.linear_to_lora_layers(model, lora_layers, params)
|
||||
trainable_params = sum(
|
||||
v.size for _, v in tree_flatten(model.trainable_parameters())
|
||||
)
|
||||
|
||||
expected_trainable_parameters = expected_trainable_parameters or (
|
||||
lora_layers * params["rank"] * args.hidden_size * 2 * n_keys
|
||||
)
|
||||
self.assertEqual(trainable_params, expected_trainable_parameters)
|
||||
|
||||
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
||||
check_config(params)
|
||||
|
||||
params["rank"] = 1
|
||||
check_config(params)
|
||||
|
||||
params["keys"] = ["self_attn.k_proj"]
|
||||
check_config(params)
|
||||
|
||||
params["keys"] = ["lm_head"]
|
||||
check_config(
|
||||
params,
|
||||
expected_trainable_parameters=(
|
||||
params["rank"] * (args.hidden_size + args.vocab_size)
|
||||
),
|
||||
)
|
||||
|
||||
params["keys"] = ["model.embed_tokens"]
|
||||
check_config(
|
||||
params,
|
||||
expected_trainable_parameters=(
|
||||
params["rank"] * (args.hidden_size + args.vocab_size)
|
||||
),
|
||||
)
|
||||
|
||||
def test_gpt_neox(self):
|
||||
from mlx_lm.models import gpt_neox
|
||||
|
||||
args = gpt_neox.ModelArgs(
|
||||
model_type="gpt_neox",
|
||||
max_position_embeddings=2048,
|
||||
hidden_size=6144,
|
||||
num_attention_heads=64,
|
||||
num_hidden_layers=44,
|
||||
layer_norm_eps=1e-5,
|
||||
vocab_size=50432,
|
||||
rotary_emb_base=10_000,
|
||||
rotary_pct=0.25,
|
||||
)
|
||||
|
||||
num_lora_layers = 4
|
||||
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
||||
|
||||
model = gpt_neox.Model(args)
|
||||
model.freeze()
|
||||
tuner.utils.linear_to_lora_layers(model, num_lora_layers, params)
|
||||
|
||||
def test_lora_embedding(self):
|
||||
num_embeddings = 256
|
||||
dims = 512
|
||||
tokens = mx.array([1, 2, 3])
|
||||
|
||||
embedding = nn.QuantizedEmbedding(num_embeddings, dims)
|
||||
dequantized_weight = mx.dequantize(
|
||||
embedding.weight,
|
||||
embedding.scales,
|
||||
embedding.biases,
|
||||
embedding.group_size,
|
||||
embedding.bits,
|
||||
)
|
||||
lora_emb = LoRAEmbedding.from_base(embedding, r=8, dropout=0, scale=10)
|
||||
new_embedding = lora_emb.fuse(de_quantize=True)
|
||||
self.assertTrue(mx.array_equal(dequantized_weight, new_embedding.weight))
|
||||
self.assertTrue(mx.array_equal(embedding(tokens), lora_emb(tokens)))
|
||||
|
||||
# as_linear
|
||||
attn_output = mx.random.uniform(shape=(dims,))
|
||||
embedding_lin_out = lora_emb.as_linear(attn_output)
|
||||
self.assertEqual(embedding_lin_out.shape, (num_embeddings,))
|
||||
self.assertTrue(
|
||||
mx.array_equal(embedding_lin_out, embedding.as_linear(attn_output))
|
||||
)
|
||||
|
||||
# change the value of lora_b and the embeddings will no longer be equal
|
||||
lora_emb.lora_b = mx.random.uniform(shape=lora_emb.lora_b.shape)
|
||||
new_embedding = lora_emb.fuse(de_quantize=True)
|
||||
self.assertFalse(mx.array_equal(dequantized_weight, new_embedding.weight))
|
||||
self.assertFalse(mx.array_equal(embedding(tokens), lora_emb(tokens)))
|
||||
|
||||
|
||||
class TestDora(unittest.TestCase):
|
||||
def test_dora_embedding(self):
|
||||
num_embeddings = 256
|
||||
dims = 512
|
||||
tokens = mx.array([1, 2, 3])
|
||||
|
||||
embedding = nn.Embedding(num_embeddings, dims)
|
||||
|
||||
dora_emb = DoRAEmbedding.from_base(embedding, r=8, dropout=0, scale=10)
|
||||
new_embedding = dora_emb.fuse()
|
||||
self.assertTrue(mx.array_equal(embedding.weight, new_embedding.weight))
|
||||
self.assertTrue(mx.array_equal(embedding(tokens), dora_emb(tokens)))
|
||||
|
||||
# as_linear
|
||||
attn_output = mx.random.uniform(shape=(dims,))
|
||||
embedding_lin_out = dora_emb.as_linear(attn_output)
|
||||
self.assertEqual(embedding_lin_out.shape, (num_embeddings,))
|
||||
self.assertTrue(
|
||||
mx.array_equal(embedding_lin_out, embedding.as_linear(attn_output))
|
||||
)
|
||||
|
||||
# change the value of lora_b and the embeddings will no longer be equal
|
||||
dora_emb.lora_b = mx.random.uniform(shape=dora_emb.lora_b.shape)
|
||||
new_embedding = dora_emb.fuse()
|
||||
self.assertFalse(mx.array_equal(embedding.weight, new_embedding.weight))
|
||||
self.assertFalse(mx.array_equal(embedding(tokens), dora_emb(tokens)))
|
||||
|
||||
def test_llama(self):
|
||||
from mlx_lm.models import llama
|
||||
|
||||
hidden_size = 1024
|
||||
intermediate_size = 2048
|
||||
args = llama.ModelArgs(
|
||||
model_type="llama",
|
||||
hidden_size=hidden_size,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=intermediate_size,
|
||||
num_attention_heads=4,
|
||||
rms_norm_eps=1e-5,
|
||||
vocab_size=10_000,
|
||||
)
|
||||
|
||||
dora_layers = 4
|
||||
|
||||
def check_config(params):
|
||||
n_keys = 2
|
||||
if "keys" in params:
|
||||
n_keys = len(params["keys"])
|
||||
model = llama.Model(args)
|
||||
model.freeze()
|
||||
tuner.utils.linear_to_lora_layers(model, dora_layers, params, use_dora=True)
|
||||
trainable_params = sum(
|
||||
v.size for _, v in tree_flatten(model.trainable_parameters())
|
||||
)
|
||||
self.assertEqual(
|
||||
trainable_params,
|
||||
dora_layers
|
||||
* (params["rank"] * hidden_size * 2 * n_keys + n_keys * hidden_size),
|
||||
)
|
||||
|
||||
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
||||
check_config(params)
|
||||
|
||||
params["rank"] = 1
|
||||
check_config(params)
|
||||
|
||||
params["keys"] = ["self_attn.k_proj"]
|
||||
check_config(params)
|
||||
|
||||
def test_dora_m_parameter(self):
|
||||
dora_lin = DoRALinear(input_dims=100, output_dims=100)
|
||||
self.assertTrue(
|
||||
mx.allclose(dora_lin.m, mx.linalg.norm(dora_lin.linear.weight, axis=1))
|
||||
)
|
||||
|
||||
# Recomputes m when changing Linear
|
||||
inital_m = dora_lin.m
|
||||
lin = nn.Linear(10, 10)
|
||||
dora_lin.set_linear(lin)
|
||||
self.assertTrue(mx.allclose(dora_lin.m, mx.linalg.norm(lin.weight, axis=1)))
|
||||
|
||||
# Works with quantized weights
|
||||
quantized_linear = nn.QuantizedLinear(512, 512)
|
||||
dora_lin.set_linear(quantized_linear)
|
||||
dequantized_weight = mx.dequantize(
|
||||
quantized_linear.weight,
|
||||
quantized_linear.scales,
|
||||
quantized_linear.biases,
|
||||
quantized_linear.group_size,
|
||||
quantized_linear.bits,
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(dora_lin.m, mx.linalg.norm(dequantized_weight, axis=1))
|
||||
)
|
||||
|
||||
def test_dora_from_linear(self):
|
||||
in_dims = 256
|
||||
out_dims = 256
|
||||
r = 4
|
||||
|
||||
linear = nn.Linear(in_dims, out_dims)
|
||||
dora_lin = DoRALinear.from_base(linear, r)
|
||||
self.assertTrue(mx.allclose(dora_lin.m, mx.linalg.norm(linear.weight, axis=1)))
|
||||
self.assertEqual(dora_lin.lora_a.shape, (in_dims, r))
|
||||
self.assertEqual(dora_lin.lora_b.shape, (r, out_dims))
|
||||
self.assertEqual(dora_lin.m.shape, (out_dims,))
|
||||
|
||||
quantized_linear = nn.QuantizedLinear(in_dims, out_dims)
|
||||
dequantized_weight = mx.dequantize(
|
||||
quantized_linear.weight,
|
||||
quantized_linear.scales,
|
||||
quantized_linear.biases,
|
||||
quantized_linear.group_size,
|
||||
quantized_linear.bits,
|
||||
)
|
||||
dora_quant_lin = DoRALinear.from_base(quantized_linear, r)
|
||||
self.assertTrue(
|
||||
mx.allclose(dora_quant_lin.m, mx.linalg.norm(dequantized_weight, axis=1))
|
||||
)
|
||||
self.assertEqual(dora_quant_lin.lora_a.shape, (in_dims, r))
|
||||
self.assertEqual(dora_quant_lin.lora_b.shape, (r, out_dims))
|
||||
self.assertEqual(dora_quant_lin.m.shape, (out_dims,))
|
||||
|
||||
def test_dora_to_linear(self):
|
||||
in_dims = 256
|
||||
out_dims = 256
|
||||
r = 4
|
||||
|
||||
linear = nn.Linear(in_dims, out_dims, bias=True)
|
||||
dora_lin = DoRALinear.from_base(linear, r)
|
||||
to_linear = dora_lin.fuse()
|
||||
self.assertTrue(mx.allclose(linear.weight, to_linear.weight))
|
||||
self.assertTrue(mx.allclose(linear.bias, to_linear.bias))
|
||||
|
||||
def dequantize_weight(quantized_linear):
|
||||
return mx.dequantize(
|
||||
quantized_linear.weight,
|
||||
quantized_linear.scales,
|
||||
quantized_linear.biases,
|
||||
quantized_linear.group_size,
|
||||
quantized_linear.bits,
|
||||
)
|
||||
|
||||
quantized_linear = nn.QuantizedLinear(in_dims, out_dims, bias=True)
|
||||
dora_quantized_linear = DoRALinear.from_base(quantized_linear, r)
|
||||
# Dequantize
|
||||
to_linear_from_quantized = dora_quantized_linear.fuse(de_quantize=True)
|
||||
self.assertTrue(
|
||||
mx.allclose(quantized_linear.bias, to_linear_from_quantized.bias)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
dequantize_weight(quantized_linear), to_linear_from_quantized.weight
|
||||
)
|
||||
)
|
||||
|
||||
def test_dora_dtype(self):
|
||||
in_dims = 256
|
||||
out_dims = 256
|
||||
r = 4
|
||||
|
||||
linear = nn.Linear(in_dims, out_dims, bias=True)
|
||||
linear.set_dtype(mx.float16)
|
||||
dora_lin = DoRALinear.from_base(linear, r)
|
||||
|
||||
x = mx.random.uniform(shape=(2, 256)).astype(mx.float16)
|
||||
self.assertEqual(dora_lin(x).dtype, mx.float16)
|
||||
|
||||
|
||||
class TestScheduleConfig(unittest.TestCase):
|
||||
def test_join(self):
|
||||
config = {"name": "cosine_decay", "warmup": 100, "arguments": [1e-5, 100]}
|
||||
cos_with_warmup = build_schedule(config)
|
||||
self.assertIsNotNone(cos_with_warmup)
|
||||
|
||||
self.assertEqual(cos_with_warmup(0), 0.0)
|
||||
self.assertAlmostEqual(cos_with_warmup(101), 1e-5, delta=1e-1)
|
||||
optimizer = opt.Adam(learning_rate=cos_with_warmup)
|
||||
for _ in range(100):
|
||||
optimizer.update({}, {})
|
||||
self.assertAlmostEqual(optimizer.learning_rate.item(), 1e-5, delta=1e-1)
|
||||
for _ in range(100):
|
||||
optimizer.update({}, {})
|
||||
expected_lr = 1e-5 * 0.5 * (1.0 + math.cos(math.pi * 200 / 10))
|
||||
self.assertAlmostEqual(optimizer.learning_rate.item(), expected_lr, delta=1e-1)
|
||||
|
||||
def test_single_schedule(self):
|
||||
|
||||
config = {
|
||||
"name": "cosine_decay",
|
||||
"arguments": [0.1, 10],
|
||||
}
|
||||
lr_schedule = build_schedule(config)
|
||||
lr = lr_schedule(4)
|
||||
expected_lr = 0.1 * 0.5 * (1.0 + math.cos(math.pi * 4 / 10))
|
||||
self.assertAlmostEqual(lr, expected_lr, delta=1e-7)
|
||||
|
||||
def test_non_zero_warmup(self):
|
||||
config = {
|
||||
"name": "cosine_decay",
|
||||
"warmup": 10,
|
||||
"warmup_init": 1e-6,
|
||||
"arguments": [1e-5, 20],
|
||||
}
|
||||
lr_schedule = build_schedule(config)
|
||||
lr = lr_schedule(0)
|
||||
self.assertAlmostEqual(lr, 1e-6, delta=1e-7)
|
||||
|
||||
def test_malformed_config(self):
|
||||
config = {"warmup": 100}
|
||||
self.assertRaises(KeyError, build_schedule, config)
|
||||
|
||||
config = {"cosine_decay": None}
|
||||
self.assertRaises(KeyError, build_schedule, config)
|
||||
|
||||
def test_evaluate_calls(self):
|
||||
mock_model = MagicMock()
|
||||
mock_dataset = MagicMock()
|
||||
mock_tokenizer = MagicMock()
|
||||
mock_default_loss = MagicMock()
|
||||
mock_iterate_batches = MagicMock()
|
||||
|
||||
mock_iterate_batches.return_value = [
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
]
|
||||
|
||||
mock_default_loss.side_effect = [
|
||||
(MagicMock(return_value=0.5), MagicMock(return_value=100)),
|
||||
(MagicMock(return_value=0.3), MagicMock(return_value=200)),
|
||||
(MagicMock(return_value=0.2), MagicMock(return_value=150)),
|
||||
(MagicMock(return_value=0.4), MagicMock(return_value=180)),
|
||||
(MagicMock(return_value=0.6), MagicMock(return_value=120)),
|
||||
]
|
||||
with swapped_with_identity(mx.distributed, "all_sum"):
|
||||
evaluate(
|
||||
model=mock_model,
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
num_batches=2,
|
||||
max_seq_length=2048,
|
||||
loss=mock_default_loss,
|
||||
iterate_batches=mock_iterate_batches,
|
||||
)
|
||||
|
||||
mock_iterate_batches.assert_called_once_with(
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
max_seq_length=2048,
|
||||
)
|
||||
self.assertEqual(mock_default_loss.call_count, 2)
|
||||
|
||||
def test_evaluate_infinite_batches(self):
|
||||
mock_model = MagicMock()
|
||||
mock_dataset = MagicMock()
|
||||
mock_tokenizer = MagicMock()
|
||||
mock_default_loss = MagicMock()
|
||||
mock_iterate_batches = MagicMock()
|
||||
|
||||
mock_iterate_batches.return_value = [
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
]
|
||||
|
||||
mock_default_loss.side_effect = [
|
||||
(MagicMock(return_value=0.5), MagicMock(return_value=100)),
|
||||
(MagicMock(return_value=0.3), MagicMock(return_value=200)),
|
||||
(MagicMock(return_value=0.2), MagicMock(return_value=150)),
|
||||
]
|
||||
|
||||
with swapped_with_identity(mx.distributed, "all_sum"):
|
||||
evaluate(
|
||||
model=mock_model,
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
num_batches=-1,
|
||||
max_seq_length=2048,
|
||||
loss=mock_default_loss,
|
||||
iterate_batches=mock_iterate_batches,
|
||||
)
|
||||
|
||||
mock_iterate_batches.assert_called_once_with(
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
max_seq_length=2048,
|
||||
)
|
||||
self.assertEqual(mock_default_loss.call_count, 3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
55
llms/tests/test_generate.py
Normal file
55
llms/tests/test_generate.py
Normal file
@@ -0,0 +1,55 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import unittest
|
||||
|
||||
from mlx_lm.utils import generate, load
|
||||
|
||||
|
||||
class TestGenerate(unittest.TestCase):
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
cls.model, cls.tokenizer = load(HF_MODEL_PATH)
|
||||
|
||||
def test_generate(self):
|
||||
# Simple test that generation runs
|
||||
text = generate(
|
||||
self.model, self.tokenizer, "hello", max_tokens=5, verbose=False
|
||||
)
|
||||
|
||||
def test_generate_with_logit_bias(self):
|
||||
logit_bias = {0: 2000.0, 1: -20.0}
|
||||
text = generate(
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
"hello",
|
||||
max_tokens=5,
|
||||
verbose=False,
|
||||
logit_bias=logit_bias,
|
||||
)
|
||||
self.assertEqual(text, "!!!!!")
|
||||
|
||||
def test_generate_with_processor(self):
|
||||
init_toks = self.tokenizer.encode("hello")
|
||||
|
||||
all_toks = None
|
||||
|
||||
def logits_processor(toks, logits):
|
||||
nonlocal all_toks
|
||||
all_toks = toks
|
||||
return logits
|
||||
|
||||
generate(
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
"hello",
|
||||
max_tokens=5,
|
||||
verbose=False,
|
||||
logits_processor=[logits_processor],
|
||||
)
|
||||
self.assertEqual(len(all_toks), len(init_toks) + 5)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@@ -1,191 +0,0 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
import sys
|
||||
import unittest
|
||||
from io import StringIO
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import mlx.optimizers as opt
|
||||
from mlx.utils import tree_flatten
|
||||
from mlx_lm import lora, tuner
|
||||
from mlx_lm.tuner.lora import LoRALinear
|
||||
from mlx_lm.tuner.trainer import evaluate
|
||||
from mlx_lm.tuner.utils import build_schedule
|
||||
|
||||
|
||||
class TestLora(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.capturedOutput = StringIO()
|
||||
sys.stdout = self.capturedOutput
|
||||
|
||||
def tearDown(self):
|
||||
sys.stdout = sys.__stdout__
|
||||
|
||||
def test_to_lora(self):
|
||||
from mlx_lm.models import llama
|
||||
|
||||
args = llama.ModelArgs(
|
||||
model_type="llama",
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=2048,
|
||||
num_attention_heads=4,
|
||||
rms_norm_eps=1e-5,
|
||||
vocab_size=10_000,
|
||||
)
|
||||
|
||||
lora_layers = 4
|
||||
|
||||
def check_config(params):
|
||||
n_keys = 2
|
||||
if "keys" in params:
|
||||
n_keys = len(params["keys"])
|
||||
model = llama.Model(args)
|
||||
model.freeze()
|
||||
tuner.utils.linear_to_lora_layers(model, lora_layers, params)
|
||||
trainable_params = sum(
|
||||
v.size for _, v in tree_flatten(model.trainable_parameters())
|
||||
)
|
||||
self.assertEqual(
|
||||
trainable_params, lora_layers * params["rank"] * 1024 * 2 * n_keys
|
||||
)
|
||||
|
||||
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
||||
check_config(params)
|
||||
|
||||
params["rank"] = 1
|
||||
check_config(params)
|
||||
|
||||
params["keys"] = ["self_attn.k_proj"]
|
||||
check_config(params)
|
||||
|
||||
|
||||
class TestScheduleConfig(unittest.TestCase):
|
||||
def test_join(self):
|
||||
config = {"name": "cosine_decay", "warmup": 100, "arguments": [1e-5, 100]}
|
||||
cos_with_warmup = build_schedule(config)
|
||||
self.assertIsNotNone(cos_with_warmup)
|
||||
|
||||
self.assertEqual(cos_with_warmup(0), 0.0)
|
||||
self.assertAlmostEqual(cos_with_warmup(101), 1e-5, delta=1e-1)
|
||||
optimizer = opt.Adam(learning_rate=cos_with_warmup)
|
||||
for _ in range(100):
|
||||
optimizer.update({}, {})
|
||||
self.assertAlmostEqual(optimizer.learning_rate.item(), 1e-5, delta=1e-1)
|
||||
for _ in range(100):
|
||||
optimizer.update({}, {})
|
||||
expected_lr = 1e-5 * 0.5 * (1.0 + math.cos(math.pi * 200 / 10))
|
||||
self.assertAlmostEqual(optimizer.learning_rate.item(), expected_lr, delta=1e-1)
|
||||
|
||||
def test_single_schedule(self):
|
||||
|
||||
config = {
|
||||
"name": "cosine_decay",
|
||||
"arguments": [0.1, 10],
|
||||
}
|
||||
lr_schedule = build_schedule(config)
|
||||
lr = lr_schedule(4)
|
||||
expected_lr = 0.1 * 0.5 * (1.0 + math.cos(math.pi * 4 / 10))
|
||||
self.assertAlmostEqual(lr, expected_lr, delta=1e-7)
|
||||
|
||||
def test_non_zero_warmup(self):
|
||||
config = {
|
||||
"name": "cosine_decay",
|
||||
"warmup": 10,
|
||||
"warmup_init": 1e-6,
|
||||
"arguments": [1e-5, 20],
|
||||
}
|
||||
lr_schedule = build_schedule(config)
|
||||
lr = lr_schedule(0)
|
||||
self.assertAlmostEqual(lr, 1e-6, delta=1e-7)
|
||||
|
||||
def test_malformed_config(self):
|
||||
config = {"warmup": 100}
|
||||
self.assertRaises(KeyError, build_schedule, config)
|
||||
|
||||
config = {"cosine_decay": None}
|
||||
self.assertRaises(KeyError, build_schedule, config)
|
||||
|
||||
def test_evaluate_calls(self):
|
||||
mock_model = MagicMock()
|
||||
mock_dataset = MagicMock()
|
||||
mock_tokenizer = MagicMock()
|
||||
mock_default_loss = MagicMock()
|
||||
mock_iterate_batches = MagicMock()
|
||||
|
||||
mock_iterate_batches.return_value = [
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
]
|
||||
|
||||
mock_default_loss.side_effect = [
|
||||
(MagicMock(return_value=0.5), MagicMock(return_value=100)),
|
||||
(MagicMock(return_value=0.3), MagicMock(return_value=200)),
|
||||
(MagicMock(return_value=0.2), MagicMock(return_value=150)),
|
||||
(MagicMock(return_value=0.4), MagicMock(return_value=180)),
|
||||
(MagicMock(return_value=0.6), MagicMock(return_value=120)),
|
||||
]
|
||||
evaluate(
|
||||
model=mock_model,
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
num_batches=2,
|
||||
max_seq_length=2048,
|
||||
loss=mock_default_loss,
|
||||
iterate_batches=mock_iterate_batches,
|
||||
)
|
||||
|
||||
mock_iterate_batches.assert_called_once_with(
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
max_seq_length=2048,
|
||||
)
|
||||
self.assertEqual(mock_default_loss.call_count, 2)
|
||||
|
||||
def test_evaluate_infinite_batches(self):
|
||||
mock_model = MagicMock()
|
||||
mock_dataset = MagicMock()
|
||||
mock_tokenizer = MagicMock()
|
||||
mock_default_loss = MagicMock()
|
||||
mock_iterate_batches = MagicMock()
|
||||
|
||||
mock_iterate_batches.return_value = [
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
(MagicMock(), MagicMock()),
|
||||
]
|
||||
|
||||
mock_default_loss.side_effect = [
|
||||
(MagicMock(return_value=0.5), MagicMock(return_value=100)),
|
||||
(MagicMock(return_value=0.3), MagicMock(return_value=200)),
|
||||
(MagicMock(return_value=0.2), MagicMock(return_value=150)),
|
||||
]
|
||||
|
||||
evaluate(
|
||||
model=mock_model,
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
num_batches=-1,
|
||||
max_seq_length=2048,
|
||||
loss=mock_default_loss,
|
||||
iterate_batches=mock_iterate_batches,
|
||||
)
|
||||
|
||||
mock_iterate_batches.assert_called_once_with(
|
||||
dataset=mock_dataset,
|
||||
tokenizer=mock_tokenizer,
|
||||
batch_size=2,
|
||||
max_seq_length=2048,
|
||||
)
|
||||
self.assertEqual(mock_default_loss.call_count, 3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@@ -1,16 +1,15 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import unittest
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_map
|
||||
from mlx_lm.models.base import KVCache
|
||||
from mlx_lm.models.cache import KVCache, RotatingKVCache, make_prompt_cache
|
||||
|
||||
|
||||
class TestModels(unittest.TestCase):
|
||||
|
||||
def test_kv_cache(self):
|
||||
cache = KVCache(32, 4)
|
||||
cache = KVCache()
|
||||
|
||||
k = mx.ones((1, 4, 1, 32), mx.float16)
|
||||
v = mx.ones((1, 4, 1, 32), mx.float16)
|
||||
@@ -29,6 +28,104 @@ class TestModels(unittest.TestCase):
|
||||
self.assertTrue(mx.array_equal(v_up, expected))
|
||||
self.assertEqual(cache.offset, cache.step + 1)
|
||||
|
||||
def test_rotating_kv_cache(self):
|
||||
b, h, d = 1, 2, 32
|
||||
cache = RotatingKVCache(max_size=8, step=4)
|
||||
|
||||
k = mx.random.uniform(shape=(b, h, 2, d))
|
||||
v = mx.random.uniform(shape=(b, h, 2, d))
|
||||
|
||||
k_up, v_up = cache.update_and_fetch(k, v)
|
||||
self.assertTrue(mx.array_equal(k_up, k))
|
||||
self.assertTrue(mx.array_equal(v_up, v))
|
||||
self.assertEqual(cache.offset, 2)
|
||||
|
||||
k = mx.random.uniform(shape=(b, h, 5, d))
|
||||
v = mx.random.uniform(shape=(b, h, 5, d))
|
||||
k_up, v_up = cache.update_and_fetch(k, v)
|
||||
self.assertTrue(mx.array_equal(k_up[..., 2:, :], k))
|
||||
self.assertTrue(mx.array_equal(v_up[..., 2:, :], v))
|
||||
|
||||
k = mx.random.uniform(shape=(b, h, 4, d))
|
||||
v = mx.random.uniform(shape=(b, h, 4, d))
|
||||
k_up, v_up = cache.update_and_fetch(k, v)
|
||||
self.assertTrue(mx.array_equal(k_up[..., -4:, :], k))
|
||||
self.assertTrue(mx.array_equal(v_up[..., -4:, :], v))
|
||||
|
||||
idx = 0
|
||||
for _ in range(10):
|
||||
k = mx.random.uniform(shape=(b, h, 1, d))
|
||||
v = mx.random.uniform(shape=(b, h, 1, d))
|
||||
k_up, v_up = cache.update_and_fetch(k, v)
|
||||
self.assertTrue(mx.array_equal(k_up[..., idx : idx + 1, :], k))
|
||||
self.assertTrue(mx.array_equal(v_up[..., idx : idx + 1, :], v))
|
||||
idx += 1
|
||||
idx %= 8
|
||||
|
||||
# Try with nonzero keep
|
||||
cache = RotatingKVCache(max_size=8, step=4, keep=2)
|
||||
|
||||
# Check a large update
|
||||
k = mx.random.uniform(shape=(b, h, 20, d))
|
||||
v = mx.random.uniform(shape=(b, h, 20, d))
|
||||
k_up, v_up = cache.update_and_fetch(k, v)
|
||||
self.assertTrue(mx.array_equal(k_up, k))
|
||||
self.assertTrue(mx.array_equal(v_up, v))
|
||||
|
||||
# A bunch of small updates
|
||||
self.assertEqual(cache.offset, 20)
|
||||
idx = 2
|
||||
for i in range(10):
|
||||
k = mx.random.uniform(shape=(b, h, 1, d))
|
||||
v = mx.random.uniform(shape=(b, h, 1, d))
|
||||
k_up, v_up = cache.update_and_fetch(k, v)
|
||||
self.assertTrue(mx.array_equal(k_up[..., idx : idx + 1, :], k))
|
||||
self.assertTrue(mx.array_equal(v_up[..., idx : idx + 1, :], v))
|
||||
self.assertEqual(cache.offset, 21 + i)
|
||||
idx += 1
|
||||
if idx >= 8:
|
||||
idx = 2
|
||||
|
||||
def test_rotating_kv_cache_chat_mode(self):
|
||||
# Test that the rotating kv cache can handle
|
||||
# alternating prompt/prefill with generation
|
||||
d = 4
|
||||
h = 2
|
||||
cache = RotatingKVCache(max_size=18, step=4)
|
||||
|
||||
x = mx.random.uniform(shape=(1, h, 8, d))
|
||||
k, v = cache.update_and_fetch(x, x)
|
||||
self.assertEqual(k.shape[2], 8)
|
||||
self.assertEqual(cache.offset, 8)
|
||||
|
||||
x = mx.random.uniform(shape=(1, h, 1, d))
|
||||
k, v = cache.update_and_fetch(x, x)
|
||||
self.assertEqual(k.shape[2], 9)
|
||||
self.assertEqual(cache.offset, 9)
|
||||
self.assertTrue(mx.allclose(x, k[..., 8:9, :]))
|
||||
|
||||
x = mx.random.uniform(shape=(1, h, 2, d))
|
||||
k, v = cache.update_and_fetch(x, x)
|
||||
self.assertEqual(k.shape[2], 11)
|
||||
self.assertEqual(cache.offset, 11)
|
||||
self.assertTrue(mx.allclose(x, k[..., 9:11, :]))
|
||||
|
||||
x = mx.random.uniform(shape=(1, h, 3, d))
|
||||
k, v = cache.update_and_fetch(x, x)
|
||||
self.assertEqual(k.shape[2], 14)
|
||||
self.assertEqual(cache.offset, 14)
|
||||
self.assertTrue(mx.allclose(x, k[..., 11:14, :]))
|
||||
|
||||
x = mx.random.uniform(shape=(1, h, 6, d))
|
||||
k, v = cache.update_and_fetch(x, x)
|
||||
self.assertEqual(cache.offset, 20)
|
||||
self.assertTrue(mx.allclose(x, k[..., -6:, :]))
|
||||
|
||||
x = mx.random.uniform(shape=(1, h, 2, d))
|
||||
k, v = cache.update_and_fetch(x, x)
|
||||
self.assertEqual(cache.offset, 22)
|
||||
self.assertTrue(mx.allclose(x, k[..., -2:, :]))
|
||||
|
||||
def model_test_runner(self, model, model_type, vocab_size, num_layers):
|
||||
|
||||
self.assertEqual(len(model.layers), num_layers)
|
||||
@@ -42,13 +139,7 @@ class TestModels(unittest.TestCase):
|
||||
self.assertEqual(outputs.shape, (1, 2, vocab_size))
|
||||
self.assertEqual(outputs.dtype, t)
|
||||
|
||||
kv_heads = (
|
||||
[model.n_kv_heads] * len(model.layers)
|
||||
if isinstance(model.n_kv_heads, int)
|
||||
else model.n_kv_heads
|
||||
)
|
||||
cache = [KVCache(model.head_dim, n) for n in kv_heads]
|
||||
|
||||
cache = make_prompt_cache(model)
|
||||
outputs = model(inputs, cache)
|
||||
self.assertEqual(outputs.shape, (1, 2, vocab_size))
|
||||
self.assertEqual(outputs.dtype, t)
|
||||
@@ -339,6 +430,26 @@ class TestModels(unittest.TestCase):
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_mamba(self):
|
||||
from mlx_lm.models import mamba
|
||||
|
||||
args = mamba.ModelArgs(
|
||||
model_type="mamba",
|
||||
vocab_size=10000,
|
||||
use_bias=False,
|
||||
use_conv_bias=True,
|
||||
conv_kernel=4,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=24,
|
||||
state_size=16,
|
||||
intermediate_size=1536,
|
||||
time_step_rank=48,
|
||||
)
|
||||
model = mamba.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_gpt2(self):
|
||||
from mlx_lm.models import gpt2
|
||||
|
||||
@@ -355,6 +466,25 @@ class TestModels(unittest.TestCase):
|
||||
model = gpt2.Model(args)
|
||||
self.model_test_runner(model, args.model_type, args.vocab_size, args.n_layer)
|
||||
|
||||
def test_gpt_neox(self):
|
||||
from mlx_lm.models import gpt_neox
|
||||
|
||||
args = gpt_neox.ModelArgs(
|
||||
model_type="gpt_neox",
|
||||
max_position_embeddings=2048,
|
||||
hidden_size=6144,
|
||||
num_attention_heads=64,
|
||||
num_hidden_layers=44,
|
||||
layer_norm_eps=1e-5,
|
||||
vocab_size=50432,
|
||||
rotary_emb_base=10_000,
|
||||
rotary_pct=0.25,
|
||||
)
|
||||
model = gpt_neox.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_openelm(self):
|
||||
from mlx_lm.models import openelm
|
||||
|
||||
@@ -430,6 +560,206 @@ class TestModels(unittest.TestCase):
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_llama3_1(self):
|
||||
from mlx_lm.models import llama
|
||||
|
||||
args = llama.ModelArgs(
|
||||
model_type="llama",
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=2048,
|
||||
num_attention_heads=4,
|
||||
rms_norm_eps=1e-5,
|
||||
vocab_size=10_000,
|
||||
max_position_embeddings=128,
|
||||
mlp_bias=False,
|
||||
num_key_value_heads=2,
|
||||
rope_scaling={
|
||||
"factor": 8.0,
|
||||
"low_freq_factor": 1.0,
|
||||
"high_freq_factor": 4.0,
|
||||
"original_max_position_embeddings": 8192,
|
||||
"rope_type": "llama3",
|
||||
},
|
||||
)
|
||||
model = llama.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_deepseek(self):
|
||||
from mlx_lm.models import deepseek
|
||||
|
||||
args = deepseek.ModelArgs(
|
||||
model_type="deepseek",
|
||||
vocab_size=1024,
|
||||
hidden_size=128,
|
||||
intermediate_size=256,
|
||||
moe_intermediate_size=256,
|
||||
num_hidden_layers=4,
|
||||
num_attention_heads=8,
|
||||
num_key_value_heads=4,
|
||||
)
|
||||
model = deepseek.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_deepseek_v2(self):
|
||||
from mlx_lm.models import deepseek_v2
|
||||
|
||||
args = deepseek_v2.ModelArgs(
|
||||
model_type="deepseek_v2",
|
||||
vocab_size=1024,
|
||||
hidden_size=128,
|
||||
intermediate_size=256,
|
||||
moe_intermediate_size=256,
|
||||
num_hidden_layers=4,
|
||||
num_attention_heads=4,
|
||||
num_key_value_heads=2,
|
||||
kv_lora_rank=4,
|
||||
q_lora_rank=4,
|
||||
qk_rope_head_dim=32,
|
||||
v_head_dim=16,
|
||||
qk_nope_head_dim=32,
|
||||
rope_scaling={
|
||||
"beta_fast": 32,
|
||||
"beta_slow": 1,
|
||||
"factor": 40,
|
||||
"mscale": 1.0,
|
||||
"mscale_all_dim": 1.0,
|
||||
"original_max_position_embeddings": 4096,
|
||||
"type": "yarn",
|
||||
},
|
||||
)
|
||||
model = deepseek_v2.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_gemma2(self):
|
||||
from mlx_lm.models import gemma2
|
||||
|
||||
args = gemma2.ModelArgs(
|
||||
model_type="gemma2",
|
||||
hidden_size=128,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=256,
|
||||
num_attention_heads=2,
|
||||
head_dim=32,
|
||||
rms_norm_eps=1e-4,
|
||||
vocab_size=1024,
|
||||
num_key_value_heads=2,
|
||||
)
|
||||
model = gemma2.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_gpt_bigcode(self):
|
||||
from mlx_lm.models import gpt_bigcode
|
||||
|
||||
args = gpt_bigcode.ModelArgs(
|
||||
model_type="gpt_bigcode",
|
||||
n_embd=128,
|
||||
n_layer=128,
|
||||
n_inner=256,
|
||||
n_head=4,
|
||||
n_positions=1000,
|
||||
layer_norm_epsilon=1e-5,
|
||||
vocab_size=1024,
|
||||
)
|
||||
model = gpt_bigcode.Model(args)
|
||||
self.model_test_runner(model, args.model_type, args.vocab_size, args.n_layer)
|
||||
|
||||
def test_nemotron(self):
|
||||
from mlx_lm.models import nemotron
|
||||
|
||||
args = nemotron.ModelArgs(
|
||||
model_type="nemotron",
|
||||
hidden_size=128,
|
||||
hidden_act="gelu",
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=256,
|
||||
num_attention_heads=4,
|
||||
norm_eps=1e-5,
|
||||
vocab_size=1024,
|
||||
num_key_value_heads=2,
|
||||
)
|
||||
model = nemotron.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_phi3small(self):
|
||||
from mlx_lm.models import phi3small
|
||||
|
||||
args = phi3small.ModelArgs(
|
||||
model_type="phi3small",
|
||||
hidden_size=128,
|
||||
dense_attention_every_n_layers=2,
|
||||
ff_intermediate_size=256,
|
||||
gegelu_limit=1.0,
|
||||
num_hidden_layers=4,
|
||||
num_attention_heads=4,
|
||||
num_key_value_heads=2,
|
||||
layer_norm_epsilon=1e-4,
|
||||
vocab_size=1000,
|
||||
)
|
||||
model = phi3small.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_phimoe(self):
|
||||
from mlx_lm.models import phimoe
|
||||
|
||||
args = phimoe.ModelArgs(
|
||||
model_type="phimoe",
|
||||
vocab_size=320,
|
||||
hidden_size=128,
|
||||
intermediate_size=256,
|
||||
num_hidden_layers=4,
|
||||
num_attention_heads=4,
|
||||
num_key_value_heads=4,
|
||||
rope_scaling={
|
||||
"long_factor": [1.0] * 16,
|
||||
"long_mscale": 1.243163121016122,
|
||||
"original_max_position_embeddings": 4096,
|
||||
"short_factor": [1.0] * 16,
|
||||
"short_mscale": 1.243163121016122,
|
||||
"type": "longrope",
|
||||
},
|
||||
)
|
||||
model = phimoe.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
def test_recurrent_gemma(self):
|
||||
from mlx_lm.models import recurrent_gemma
|
||||
|
||||
args = recurrent_gemma.ModelArgs(
|
||||
model_type="recurrent_gemma",
|
||||
hidden_size=128,
|
||||
attention_bias=False,
|
||||
conv1d_width=3,
|
||||
intermediate_size=256,
|
||||
logits_soft_cap=1.0,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=4,
|
||||
num_key_value_heads=2,
|
||||
rms_norm_eps=1e-4,
|
||||
rope_theta=1000,
|
||||
attention_window_size=1024,
|
||||
vocab_size=1000,
|
||||
block_types=["recurrent", "recurrent", "attention"],
|
||||
)
|
||||
model = recurrent_gemma.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
306
llms/tests/test_prompt_cache.py
Normal file
306
llms/tests/test_prompt_cache.py
Normal file
@@ -0,0 +1,306 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import copy
|
||||
import os
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.models.cache import (
|
||||
KVCache,
|
||||
MambaCache,
|
||||
QuantizedKVCache,
|
||||
RotatingKVCache,
|
||||
load_prompt_cache,
|
||||
make_prompt_cache,
|
||||
save_prompt_cache,
|
||||
trim_prompt_cache,
|
||||
)
|
||||
from mlx_lm.utils import generate_step, load
|
||||
|
||||
HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
|
||||
|
||||
class TestPromptCache(unittest.TestCase):
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.test_dir_fid = tempfile.TemporaryDirectory()
|
||||
cls.test_dir = cls.test_dir_fid.name
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
cls.test_dir_fid.cleanup()
|
||||
|
||||
def test_save_load(self):
|
||||
cache = [KVCache() for _ in range(4)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 4))
|
||||
c.update_and_fetch(x, x)
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
save_prompt_cache(cache_file, cache)
|
||||
loaded_cache = load_prompt_cache(cache_file)
|
||||
self.assertTrue(len(cache), len(loaded_cache))
|
||||
for c, lc in zip(cache, loaded_cache):
|
||||
self.assertEqual(c.offset, lc.offset)
|
||||
self.assertTrue(mx.array_equal(c.state[0], lc.state[0]))
|
||||
self.assertTrue(mx.array_equal(c.state[1], lc.state[1]))
|
||||
|
||||
# Test with metadata
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
metadata = {"a": "b", "c": "d"}
|
||||
save_prompt_cache(cache_file, cache, metadata)
|
||||
_, loaded_metadata = load_prompt_cache(cache_file, return_metadata=True)
|
||||
self.assertEqual(metadata, loaded_metadata)
|
||||
|
||||
def test_save_load_rotating_cache(self):
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
|
||||
# Test with rotating cache
|
||||
cache = [RotatingKVCache(max_size=8, keep=2) for _ in range(4)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 4))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
save_prompt_cache(cache_file, cache)
|
||||
loaded_cache = load_prompt_cache(cache_file)
|
||||
self.assertTrue(len(cache), len(loaded_cache))
|
||||
for c, lc in zip(cache, loaded_cache):
|
||||
self.assertEqual(c.offset, lc.offset)
|
||||
self.assertEqual(c.keep, lc.keep)
|
||||
self.assertEqual(c.max_size, lc.max_size)
|
||||
self.assertEqual(c.step, lc.step)
|
||||
self.assertTrue(mx.array_equal(c.state[0], lc.state[0]))
|
||||
self.assertTrue(mx.array_equal(c.state[1], lc.state[1]))
|
||||
|
||||
# Do a couple single token updates to get a rotation
|
||||
for _ in range(2):
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 1, 4))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
save_prompt_cache(cache_file, cache)
|
||||
loaded_cache = load_prompt_cache(cache_file)
|
||||
|
||||
for c, lc in zip(cache, loaded_cache):
|
||||
x = mx.random.uniform(shape=(1, 8, 1, 4))
|
||||
k, v = c.update_and_fetch(x, x)
|
||||
lk, lv = lc.update_and_fetch(x, x)
|
||||
self.assertEqual(c.offset, lc.offset)
|
||||
self.assertTrue(mx.array_equal(k, lk))
|
||||
self.assertTrue(mx.array_equal(v, lv))
|
||||
|
||||
def test_save_load_mixed_cache(self):
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
|
||||
cache = [MambaCache(), KVCache(), RotatingKVCache(8), MambaCache()]
|
||||
for c in cache:
|
||||
if isinstance(c, MambaCache):
|
||||
c[0] = mx.random.uniform(shape=(4, 4, 4))
|
||||
c[1] = mx.random.uniform(shape=(4, 4, 4))
|
||||
else:
|
||||
x = mx.random.uniform(shape=(4, 4, 7, 4))
|
||||
y = mx.random.uniform(shape=(4, 4, 7, 4))
|
||||
c.update_and_fetch(x, y)
|
||||
|
||||
save_prompt_cache(cache_file, cache)
|
||||
loaded_cache = load_prompt_cache(cache_file)
|
||||
for c, lc in zip(cache, loaded_cache):
|
||||
if isinstance(c, MambaCache):
|
||||
self.assertTrue(mx.array_equal(c[0], lc[0]))
|
||||
self.assertTrue(mx.array_equal(c[1], lc[1]))
|
||||
else:
|
||||
x = mx.random.uniform(shape=(4, 4, 1, 4))
|
||||
y = mx.random.uniform(shape=(4, 4, 1, 4))
|
||||
k, v = c.update_and_fetch(x, y)
|
||||
lk, lv = lc.update_and_fetch(x, y)
|
||||
self.assertEqual(c.offset, lc.offset)
|
||||
self.assertTrue(mx.array_equal(k, lk))
|
||||
self.assertTrue(mx.array_equal(v, lv))
|
||||
|
||||
def test_cache_with_generate(self):
|
||||
model, tokenizer = load(HF_MODEL_PATH)
|
||||
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
|
||||
results = zip(range(4), generate_step(prompt, model))
|
||||
toks, all_logits = zip(*(r[1] for r in results))
|
||||
|
||||
prompt_cache = make_prompt_cache(model)
|
||||
i = 0
|
||||
for _, (tok, logits) in zip(
|
||||
range(2), generate_step(prompt, model, prompt_cache=prompt_cache)
|
||||
):
|
||||
self.assertEqual(tok, toks[i])
|
||||
self.assertTrue(mx.allclose(logits, all_logits[i]))
|
||||
i += 1
|
||||
|
||||
for _, (tok, logits) in zip(
|
||||
range(1),
|
||||
generate_step(mx.array([toks[i]]), model, prompt_cache=prompt_cache),
|
||||
):
|
||||
i += 1
|
||||
self.assertEqual(tok, toks[i])
|
||||
self.assertTrue(mx.allclose(logits, all_logits[i]))
|
||||
|
||||
def test_trim_cache(self):
|
||||
cache = [KVCache() for _ in range(2)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 4))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
# Trim
|
||||
num_trimmed = trim_prompt_cache(cache, 7)
|
||||
self.assertEqual(num_trimmed, 7)
|
||||
|
||||
# Trim more tokens than remain
|
||||
num_trimmed = trim_prompt_cache(cache, 4)
|
||||
self.assertEqual(num_trimmed, 3)
|
||||
|
||||
# Can't trim mamba cache
|
||||
cache = [MambaCache() for _ in range(2)]
|
||||
for c in cache:
|
||||
c.state = mx.zeros((5, 5))
|
||||
num_trimmed = trim_prompt_cache(cache, 7)
|
||||
self.assertEqual(num_trimmed, 0)
|
||||
|
||||
# All cache's have to be trimmable
|
||||
cache = [MambaCache(), KVCache()]
|
||||
cache[0].state = mx.zeros((5, 5))
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 4))
|
||||
cache[1].update_and_fetch(x, x)
|
||||
num_trimmed = trim_prompt_cache(cache, 1)
|
||||
self.assertEqual(num_trimmed, 0)
|
||||
|
||||
cache = [RotatingKVCache(max_size=6) for _ in range(2)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 5, 4))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
num_trimmed = trim_prompt_cache(cache, 4)
|
||||
self.assertEqual(num_trimmed, 4)
|
||||
|
||||
# Can't trim fixed-size KV cache after processing
|
||||
# more than max_kv_size tokens
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 4))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
num_trimmed = trim_prompt_cache(cache, 4)
|
||||
self.assertEqual(num_trimmed, 0)
|
||||
|
||||
cache = [QuantizedKVCache() for _ in range(2)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 64))
|
||||
c.update_and_fetch(x, x)
|
||||
|
||||
num_trimmed = trim_prompt_cache(cache, 7)
|
||||
self.assertEqual(num_trimmed, 7)
|
||||
|
||||
# Trim more tokens than remain
|
||||
num_trimmed = trim_prompt_cache(cache, 4)
|
||||
self.assertEqual(num_trimmed, 3)
|
||||
|
||||
def test_trim_cache_with_generate(self):
|
||||
model, tokenizer = load(HF_MODEL_PATH)
|
||||
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
|
||||
|
||||
prompt_cache = make_prompt_cache(model)
|
||||
|
||||
# Generate one token so we process the full prompt
|
||||
last_tok, _ = next(generate_step(prompt, model, prompt_cache=prompt_cache))
|
||||
last_tok = mx.array([last_tok])
|
||||
|
||||
# Generate two more tokens
|
||||
results = zip(
|
||||
range(2), generate_step(last_tok, model, prompt_cache=prompt_cache)
|
||||
)
|
||||
toks, all_logits = zip(*(r[1] for r in results))
|
||||
|
||||
# To get back to the cache just after processing the prompt,
|
||||
# trim by 3 tokens
|
||||
trim_prompt_cache(prompt_cache, 3)
|
||||
|
||||
# Generate the same thing again
|
||||
results = zip(
|
||||
range(2), generate_step(last_tok, model, prompt_cache=prompt_cache)
|
||||
)
|
||||
second_toks, second_all_logits = zip(*(r[1] for r in results))
|
||||
self.assertEqual(toks, second_toks)
|
||||
self.assertTrue(
|
||||
all(mx.allclose(l, l2) for l, l2 in zip(all_logits, second_all_logits))
|
||||
)
|
||||
|
||||
def test_cache_copying(self):
|
||||
cache = [KVCache()]
|
||||
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 4))
|
||||
cache[0].update_and_fetch(x, x)
|
||||
|
||||
y = mx.random.uniform(shape=(1, 8, 1, 4))
|
||||
cache[0].update_and_fetch(y, y)
|
||||
|
||||
old_cache = copy.deepcopy(cache)
|
||||
|
||||
trim_prompt_cache(cache, 1)
|
||||
|
||||
self.assertTrue(old_cache[0].offset, 11)
|
||||
self.assertTrue(cache[0].offset, 10)
|
||||
|
||||
z = mx.random.uniform(shape=(1, 8, 1, 4))
|
||||
cache[0].update_and_fetch(z, z)
|
||||
|
||||
self.assertTrue(mx.allclose(old_cache[0].keys[..., 10:11, :], y))
|
||||
self.assertTrue(mx.allclose(cache[0].keys[..., 10:11, :], z))
|
||||
|
||||
def test_save_load_quantized_cache(self):
|
||||
cache = [QuantizedKVCache(bits=4, group_size=32) for _ in range(4)]
|
||||
for c in cache:
|
||||
x = mx.random.uniform(shape=(1, 8, 10, 32))
|
||||
c.update_and_fetch(x, x)
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
save_prompt_cache(cache_file, cache)
|
||||
loaded_cache = load_prompt_cache(cache_file)
|
||||
self.assertTrue(loaded_cache[0].bits == cache[0].bits)
|
||||
self.assertTrue(loaded_cache[0].group_size == cache[0].group_size)
|
||||
self.assertTrue(len(cache), len(loaded_cache))
|
||||
for c, lc in zip(cache, loaded_cache):
|
||||
self.assertEqual(c.offset, lc.offset)
|
||||
# Loop over quantized tuple
|
||||
for i in range(3):
|
||||
self.assertTrue(mx.array_equal(c.state[0][i], lc.state[0][i]))
|
||||
self.assertTrue(mx.array_equal(c.state[1][i], lc.state[1][i]))
|
||||
|
||||
# Test with metadata
|
||||
cache_file = os.path.join(self.test_dir, "prompt_cache.safetensors")
|
||||
metadata = {"a": "b", "c": "d"}
|
||||
save_prompt_cache(cache_file, cache, metadata)
|
||||
_, loaded_metadata = load_prompt_cache(cache_file, return_metadata=True)
|
||||
self.assertEqual(metadata, loaded_metadata)
|
||||
|
||||
def test_cache_to_quantized(self):
|
||||
model, tokenizer = load(HF_MODEL_PATH)
|
||||
prompt = tokenizer.encode("this is a prompt", return_tensors="mlx")[0]
|
||||
results = zip(range(4), generate_step(prompt, model))
|
||||
toks, all_logits = zip(*(r[1] for r in results))
|
||||
|
||||
prompt_cache = make_prompt_cache(model)
|
||||
i = 0
|
||||
for _, (tok, logits) in zip(
|
||||
range(2), generate_step(prompt, model, prompt_cache=prompt_cache)
|
||||
):
|
||||
self.assertEqual(tok, toks[i])
|
||||
self.assertTrue(mx.allclose(logits, all_logits[i]))
|
||||
i += 1
|
||||
|
||||
prompt_cache = [c.to_quantized(bits=8, group_size=32) for c in prompt_cache]
|
||||
|
||||
for _, (tok, logits) in zip(
|
||||
range(1),
|
||||
generate_step(mx.array([toks[i]]), model, prompt_cache=prompt_cache),
|
||||
):
|
||||
i += 1
|
||||
self.assertEqual(tok, toks[i])
|
||||
self.assertTrue(mx.allclose(logits, all_logits[i], rtol=1e-2))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@@ -1,38 +1,32 @@
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_lm.sample_utils import top_p_sampling
|
||||
|
||||
|
||||
class TestSamplingUtils(unittest.TestCase):
|
||||
@patch("mlx.core.random.categorical")
|
||||
def test_top_p_sampling(self, mock_categorical):
|
||||
logits = mx.array([[1.0, 2.0, 3.0, 4.0]])
|
||||
top_p = 0.3
|
||||
def test_top_p_sampling(self):
|
||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
temperature = 1.0
|
||||
expected_token = mx.array([3])
|
||||
mock_categorical.return_value = expected_token
|
||||
|
||||
token = top_p_sampling(logits, top_p, temperature)
|
||||
expected_top_probs = mx.array([[0.0, 0.0, 0.0, 0.643914]])
|
||||
self.assertTrue(mx.allclose(token, expected_token))
|
||||
args, _ = mock_categorical.call_args
|
||||
self.assertTrue(args[0].shape == expected_top_probs.shape)
|
||||
self.assertTrue(mx.allclose(args[0], mx.log(expected_top_probs)))
|
||||
token = top_p_sampling(logits, 0.3, temperature).item()
|
||||
self.assertEqual(token, 0)
|
||||
|
||||
logits = mx.array([[1.0, 2.0, 3.0, 4.0]])
|
||||
top_p = 0.9
|
||||
temperature = 1.0
|
||||
expected_token = mx.array([3])
|
||||
mock_categorical.return_value = expected_token
|
||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
||||
self.assertTrue(token in (0, 3))
|
||||
|
||||
token = top_p_sampling(logits, top_p, temperature)
|
||||
expected_top_probs = mx.array([[0.0, 0.0871443, 0.236883, 0.643914]])
|
||||
self.assertTrue(mx.allclose(token, expected_token))
|
||||
args, _ = mock_categorical.call_args
|
||||
self.assertTrue(args[0].shape == expected_top_probs.shape)
|
||||
self.assertTrue(mx.allclose(args[0], mx.log(expected_top_probs)))
|
||||
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
||||
logits = mx.log(probs)
|
||||
|
||||
token = top_p_sampling(logits, 0.4, temperature).item()
|
||||
self.assertEqual(token, 1)
|
||||
|
||||
token = top_p_sampling(logits, 0.6, temperature).item()
|
||||
self.assertTrue(token in (1, 2))
|
||||
|
||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
||||
self.assertTrue(token in (1, 2, 3))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -1,4 +1,7 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import http
|
||||
import json
|
||||
import threading
|
||||
import unittest
|
||||
|
||||
@@ -11,8 +14,9 @@ class DummyModelProvider:
|
||||
def __init__(self):
|
||||
HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
self.model, self.tokenizer = load(HF_MODEL_PATH)
|
||||
self.model_key = (HF_MODEL_PATH, None)
|
||||
|
||||
def load(self, model):
|
||||
def load(self, model, adapter=None):
|
||||
assert model in ["default_model", "chat_model"]
|
||||
return self.model, self.tokenizer
|
||||
|
||||
@@ -76,6 +80,31 @@ class TestServer(unittest.TestCase):
|
||||
self.assertIn("id", response_body)
|
||||
self.assertIn("choices", response_body)
|
||||
|
||||
def test_handle_models(self):
|
||||
url = f"http://localhost:{self.port}/v1/models"
|
||||
response = requests.get(url)
|
||||
self.assertEqual(response.status_code, 200)
|
||||
response_body = json.loads(response.text)
|
||||
self.assertEqual(response_body["object"], "list")
|
||||
self.assertIsInstance(response_body["data"], list)
|
||||
self.assertGreater(len(response_body["data"]), 0)
|
||||
model = response_body["data"][0]
|
||||
self.assertIn("id", model)
|
||||
self.assertEqual(model["object"], "model")
|
||||
self.assertIn("created", model)
|
||||
|
||||
def test_sequence_overlap(self):
|
||||
from mlx_lm.server import sequence_overlap
|
||||
|
||||
self.assertTrue(sequence_overlap([1], [1]))
|
||||
self.assertTrue(sequence_overlap([1, 2], [1, 2]))
|
||||
self.assertTrue(sequence_overlap([1, 3], [3, 4]))
|
||||
self.assertTrue(sequence_overlap([1, 2, 3], [2, 3]))
|
||||
|
||||
self.assertFalse(sequence_overlap([1], [2]))
|
||||
self.assertFalse(sequence_overlap([1, 2], [3, 4]))
|
||||
self.assertFalse(sequence_overlap([1, 2, 3], [4, 1, 2, 3]))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
90
llms/tests/test_tokenizers.py
Normal file
90
llms/tests/test_tokenizers.py
Normal file
@@ -0,0 +1,90 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx_lm.tokenizer_utils import (
|
||||
BPEStreamingDetokenizer,
|
||||
NaiveStreamingDetokenizer,
|
||||
SPMStreamingDetokenizer,
|
||||
load_tokenizer,
|
||||
)
|
||||
|
||||
|
||||
class TestTokenizers(unittest.TestCase):
|
||||
|
||||
def download_tokenizer(self, repo):
|
||||
path = Path(
|
||||
snapshot_download(
|
||||
repo_id=repo,
|
||||
allow_patterns=[
|
||||
"tokenizer.json",
|
||||
"tokenizer_config.json",
|
||||
"special_tokens_map.json",
|
||||
"tokenizer.model",
|
||||
],
|
||||
)
|
||||
)
|
||||
return load_tokenizer(path)
|
||||
|
||||
def check_tokenizer(self, tokenizer):
|
||||
def check(tokens):
|
||||
expected_text = tokenizer.decode(tokens)
|
||||
detokenizer = tokenizer.detokenizer
|
||||
detokenizer.reset()
|
||||
text = ""
|
||||
for t in tokens:
|
||||
detokenizer.add_token(t)
|
||||
seg = detokenizer.last_segment
|
||||
text += seg
|
||||
detokenizer.finalize()
|
||||
text += detokenizer.last_segment
|
||||
self.assertEqual(text, expected_text)
|
||||
|
||||
tokens = tokenizer.encode("a ,b")
|
||||
check(tokens)
|
||||
|
||||
tokens = tokenizer.encode('{"why_its_funny" :"a_joke_explainer" ,"rating":3.5}')
|
||||
check(tokens)
|
||||
|
||||
tokens = tokenizer.encode("3 3")
|
||||
check(tokens)
|
||||
|
||||
tokens = tokenizer.encode("import 'package:flutter/material.dart';")
|
||||
check(tokens)
|
||||
|
||||
def test_tokenizers(self):
|
||||
tokenizer_repos = [
|
||||
("mlx-community/Qwen1.5-0.5B-Chat-4bit", BPEStreamingDetokenizer),
|
||||
("mlx-community/Mistral-7B-v0.2-4bit", SPMStreamingDetokenizer),
|
||||
("mlx-community/Phi-3.5-mini-instruct-4bit", SPMStreamingDetokenizer),
|
||||
("mlx-community/Mistral-7B-Instruct-v0.3", SPMStreamingDetokenizer),
|
||||
("mlx-community/Llama-3.2-1B-Instruct-4bit", BPEStreamingDetokenizer),
|
||||
]
|
||||
for tokenizer_repo, expected_detokenizer in tokenizer_repos:
|
||||
with self.subTest(tokenizer=tokenizer_repo):
|
||||
tokenizer = self.download_tokenizer(tokenizer_repo)
|
||||
tokenizer.decode([0, 1, 2])
|
||||
self.assertTrue(isinstance(tokenizer.detokenizer, expected_detokenizer))
|
||||
self.check_tokenizer(tokenizer)
|
||||
|
||||
# Try one with a naive detokenizer
|
||||
tokenizer = self.download_tokenizer("mlx-community/Llama-3.2-1B-Instruct-4bit")
|
||||
tokenizer._detokenizer = NaiveStreamingDetokenizer(tokenizer)
|
||||
self.check_tokenizer(tokenizer)
|
||||
|
||||
def test_special_tokens(self):
|
||||
tokenizer_repo = "mlx-community/DeepSeek-Coder-V2-Lite-Instruct-4bit-mlx"
|
||||
tokenizer = self.download_tokenizer(tokenizer_repo)
|
||||
|
||||
detokenizer = tokenizer.detokenizer
|
||||
detokenizer.reset()
|
||||
detokenizer.add_token(tokenizer.eos_token_id)
|
||||
detokenizer.finalize()
|
||||
|
||||
self.assertEqual(detokenizer.last_segment, tokenizer.eos_token)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@@ -82,6 +82,7 @@ class TestUtils(unittest.TestCase):
|
||||
self.assertTrue(isinstance(model.layers[-1].mlp.up_proj, nn.QuantizedLinear))
|
||||
|
||||
# Check model weights have right type
|
||||
mlx_path = os.path.join(self.test_dir, "mlx_model_bf16")
|
||||
utils.convert(HF_MODEL_PATH, mlx_path=mlx_path, dtype="bfloat16")
|
||||
model, _ = utils.load(mlx_path)
|
||||
|
||||
|
50
llms/tests/test_utils_load_model.py
Normal file
50
llms/tests/test_utils_load_model.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.nn as nn
|
||||
from mlx_lm.models.qwen2 import Model as Qwen2Model
|
||||
from mlx_lm.utils import get_model_path, load_model
|
||||
|
||||
HF_MODEL_PATH = "mlx-community/Qwen1.5-0.5B-Chat-4bit"
|
||||
|
||||
|
||||
class TestLoadModelCustomGetClasses(unittest.TestCase):
|
||||
|
||||
def test_load_model_with_custom_get_classes(self):
|
||||
class CustomQwenModel(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.config = args
|
||||
self.custom_attribute = "This is a custom model"
|
||||
|
||||
def load_weights(self, weights):
|
||||
self.qwenWeights = weights
|
||||
|
||||
class CustomQwenConfig:
|
||||
@classmethod
|
||||
def from_dict(cls, config):
|
||||
instance = cls()
|
||||
for k, v in config.items():
|
||||
setattr(instance, k, v)
|
||||
return instance
|
||||
|
||||
def custom_get_classes(config):
|
||||
return CustomQwenModel, CustomQwenConfig
|
||||
|
||||
model_path = get_model_path(HF_MODEL_PATH)
|
||||
model = load_model(model_path, get_model_classes=custom_get_classes)
|
||||
|
||||
self.assertIsInstance(model, CustomQwenModel)
|
||||
self.assertTrue(hasattr(model, "custom_attribute"))
|
||||
self.assertEqual(model.custom_attribute, "This is a custom model")
|
||||
self.assertTrue(hasattr(model, "qwenWeights"))
|
||||
|
||||
def test_load_model_with_default_get_classes(self):
|
||||
model_path = get_model_path(HF_MODEL_PATH)
|
||||
model = load_model(model_path)
|
||||
|
||||
self.assertIsInstance(model, Qwen2Model)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Reference in New Issue
Block a user