black format

This commit is contained in:
Awni Hannun
2023-12-09 14:15:25 -08:00
parent b8332a1e66
commit 98f4346c81
6 changed files with 44 additions and 18 deletions

View File

@@ -32,7 +32,12 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert BERT weights to MLX.")
parser.add_argument(
"--bert-model",
choices=["bert-base-uncased", "bert-base-cased", "bert-large-uncased", "bert-large-cased"],
choices=[
"bert-base-uncased",
"bert-base-cased",
"bert-large-uncased",
"bert-large-cased",
],
default="bert-base-uncased",
help="The huggingface name of the BERT model to save.",
)
@@ -44,4 +49,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
convert(args.bert_model, args.mlx_model)
convert(args.bert_model, args.mlx_model)

View File

@@ -24,10 +24,17 @@ def run(bert_model: str):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the BERT model using HuggingFace Transformers.")
parser = argparse.ArgumentParser(
description="Run the BERT model using HuggingFace Transformers."
)
parser.add_argument(
"--bert-model",
choices=["bert-base-uncased", "bert-base-cased", "bert-large-uncased", "bert-large-cased"],
choices=[
"bert-base-uncased",
"bert-base-cased",
"bert-large-uncased",
"bert-large-cased",
],
default="bert-base-uncased",
help="The huggingface name of the BERT model to save.",
)

View File

@@ -1,3 +1,4 @@
import numpy as np
from typing import Optional
from dataclasses import dataclass
from transformers import BertTokenizer
@@ -214,19 +215,29 @@ def run(bert_model: str, mlx_model: str):
"A second string",
"This is another string.",
]
tokens = tokenizer(batch, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
mlx_output, mlx_pooled = model(**tokens)
mlx_output = numpy.array(mlx_output)
mlx_pooled = numpy.array(mlx_pooled)
vs = model_configs[bert_model].vocab_size
ts = np.random.randint(0, vs, (8, 512))
tokens["input_ids"] = mx.array(ts)
tokens["token_type_ids"] = mx.zeros((8, 512), mx.int32)
tokens.pop("attention_mask")
print("MLX BERT:")
print(mlx_output)
for _ in range(5):
out = model(**tokens)
mx.eval(out)
print("\n\nMLX Pooled:")
print(mlx_pooled[0, :20])
import time
tic = time.time()
for _ in range(10):
out = model(**tokens)
mx.eval(out)
toc = time.time()
tps = (8 * 5 * 10) / (toc - tic)
print(tps)
if __name__ == "__main__":