mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 04:14:38 +08:00
Faster sampling with mx.compile
(#937)
* faster sampling with compile * fix test
This commit is contained in:
@@ -1,6 +1,11 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array:
|
||||
"""
|
||||
Apply top-p (nucleus) sampling to logits.
|
||||
@@ -13,7 +18,7 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
||||
token selected based on the top-p criterion.
|
||||
"""
|
||||
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
|
||||
probs = mx.softmax(logits / temperature, axis=-1)
|
||||
probs = mx.softmax(logits * (1 / temperature), axis=-1)
|
||||
|
||||
# sort probs in ascending order
|
||||
sorted_indices = mx.argsort(probs, axis=-1)
|
||||
@@ -25,10 +30,15 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
||||
top_probs = mx.where(
|
||||
cumulative_probs > 1 - top_p,
|
||||
sorted_probs,
|
||||
mx.zeros_like(sorted_probs),
|
||||
0,
|
||||
)
|
||||
|
||||
sorted_token = mx.random.categorical(mx.log(top_probs))
|
||||
token = sorted_indices.squeeze(0)[sorted_token]
|
||||
|
||||
return token
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||
def categorical_sampling(logits, temp):
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
@@ -20,7 +20,7 @@ from transformers import PreTrainedTokenizer
|
||||
|
||||
# Local imports
|
||||
from .models.base import KVCache
|
||||
from .sample_utils import top_p_sampling
|
||||
from .sample_utils import categorical_sampling, top_p_sampling
|
||||
from .tokenizer_utils import TokenizerWrapper, load_tokenizer
|
||||
from .tuner.utils import apply_lora_layers
|
||||
from .tuner.utils import dequantize as dequantize_model
|
||||
@@ -169,7 +169,7 @@ def generate_step(
|
||||
if top_p > 0 and top_p < 1.0:
|
||||
token = top_p_sampling(logits, top_p, temp)
|
||||
else:
|
||||
token = mx.random.categorical(logits * (1 / temp))
|
||||
token = categorical_sampling(logits, temp)
|
||||
|
||||
return token, logprobs
|
||||
|
||||
|
Reference in New Issue
Block a user