mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
Encodec (#991)
* initial encodec * works * nits * use fast group norm * fix for rnn layer * fix mlx version * use custom LSTM kernel * audio encodec * fix example, support batched inference * nits
This commit is contained in:
parent
796d5e40e4
commit
9bb2dd62f3
@ -27,6 +27,7 @@ Some more useful examples are listed below.
|
||||
### Audio Models
|
||||
|
||||
- Speech recognition with [OpenAI's Whisper](whisper).
|
||||
- Audio compression and generation with [Meta's EnCodec](encodec).
|
||||
|
||||
### Multimodal models
|
||||
|
||||
|
83
encodec/README.md
Normal file
83
encodec/README.md
Normal file
@ -0,0 +1,83 @@
|
||||
# EnCodec
|
||||
|
||||
An example of Meta's EnCodec model in MLX.[^1] EnCodec is used to compress and
|
||||
generate audio.
|
||||
|
||||
### Setup
|
||||
|
||||
Install the requirements:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Optionally install FFmpeg and SciPy for loading and saving audio files,
|
||||
respectively.
|
||||
|
||||
Install [FFmpeg](https://ffmpeg.org/):
|
||||
|
||||
```
|
||||
# on macOS using Homebrew (https://brew.sh/)
|
||||
brew install ffmpeg
|
||||
```
|
||||
|
||||
Install SciPy:
|
||||
|
||||
```
|
||||
pip install scipy
|
||||
```
|
||||
|
||||
### Example
|
||||
|
||||
An example using the model:
|
||||
|
||||
```python
|
||||
import mlx.core as mx
|
||||
from utils import load, load_audio, save_audio
|
||||
|
||||
# Load the 48 KHz model and preprocessor.
|
||||
model, processor = load("mlx-community/encodec-48khz-float32")
|
||||
|
||||
# Load an audio file
|
||||
audio = load_audio("path/to/aduio", model.sampling_rate, model.channels)
|
||||
|
||||
# Preprocess the audio (this can also be a list of arrays for batched
|
||||
# processing).
|
||||
feats, mask = processor(audio)
|
||||
|
||||
# Encode at the given bandwidth. A lower bandwidth results in more
|
||||
# compression but lower reconstruction quality.
|
||||
@mx.compile
|
||||
def encode(feats, mask):
|
||||
return model.encode(feats, mask, bandwidth=3)
|
||||
|
||||
# Decode to reconstruct the audio
|
||||
@mx.compile
|
||||
def decode(codes, scales, mask):
|
||||
return model.decode(codes, scales, mask)
|
||||
|
||||
|
||||
codes, scales = encode(feats, mask)
|
||||
reconstructed = decode(codes, scales, mask)
|
||||
|
||||
# Trim any padding:
|
||||
reconstructed = reconstructed[0, : len(audio)]
|
||||
|
||||
# Save the audio as a wave file
|
||||
save_audio("reconstructed.wav", reconstructed, model.sampling_rate)
|
||||
```
|
||||
|
||||
The 24 KHz, 32 KHz, and 48 KHz MLX formatted models are available in the
|
||||
[Hugging Face MLX Community](https://huggingface.co/collections/mlx-community/encodec-66e62334038300b07a43b164)
|
||||
in several data types.
|
||||
|
||||
### Optional
|
||||
|
||||
To convert models, use the `convert.py` script. To see the options, run:
|
||||
|
||||
```bash
|
||||
python convert.py -h
|
||||
```
|
||||
|
||||
[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2210.13438) and
|
||||
[code](https://github.com/facebookresearch/encodec) for more details.
|
30
encodec/benchmarks/bench_mx.py
Normal file
30
encodec/benchmarks/bench_mx.py
Normal file
@ -0,0 +1,30 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
from utils import load
|
||||
|
||||
model, processor = load("mlx-community/encodec-48khz-float32")
|
||||
|
||||
audio = mx.random.uniform(shape=(288000, 2))
|
||||
feats, mask = processor(audio)
|
||||
mx.eval(model, feats, mask)
|
||||
|
||||
|
||||
@mx.compile
|
||||
def fun():
|
||||
codes, scales = model.encode(feats, mask, bandwidth=3)
|
||||
reconstructed = model.decode(codes, scales, mask)
|
||||
return reconstructed
|
||||
|
||||
|
||||
for _ in range(5):
|
||||
mx.eval(fun())
|
||||
|
||||
tic = time.time()
|
||||
for _ in range(10):
|
||||
mx.eval(fun())
|
||||
toc = time.time()
|
||||
ms = 1000 * (toc - tic) / 10
|
||||
print(f"Time per it: {ms:.3f}")
|
34
encodec/benchmarks/bench_pt.py
Normal file
34
encodec/benchmarks/bench_pt.py
Normal file
@ -0,0 +1,34 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoProcessor, EncodecModel
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/encodec_48khz")
|
||||
audio = np.random.uniform(size=(2, 288000)).astype(np.float32)
|
||||
|
||||
pt_model = EncodecModel.from_pretrained("facebook/encodec_48khz").to("mps")
|
||||
pt_inputs = processor(
|
||||
raw_audio=audio, sampling_rate=processor.sampling_rate, return_tensors="pt"
|
||||
).to("mps")
|
||||
|
||||
|
||||
def fun():
|
||||
pt_encoded = pt_model.encode(pt_inputs["input_values"], pt_inputs["padding_mask"])
|
||||
pt_audio = pt_model.decode(
|
||||
pt_encoded.audio_codes, pt_encoded.audio_scales, pt_inputs["padding_mask"]
|
||||
)
|
||||
torch.mps.synchronize()
|
||||
|
||||
|
||||
for _ in range(5):
|
||||
fun()
|
||||
|
||||
tic = time.time()
|
||||
for _ in range(10):
|
||||
fun()
|
||||
toc = time.time()
|
||||
ms = 1000 * (toc - tic) / 10
|
||||
print(f"Time per it: {ms:.3f}")
|
213
encodec/convert.py
Normal file
213
encodec/convert.py
Normal file
@ -0,0 +1,213 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
from textwrap import dedent
|
||||
from types import SimpleNamespace
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
import encodec
|
||||
|
||||
|
||||
def fetch_from_hub(hf_repo: str) -> Path:
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=hf_repo,
|
||||
allow_patterns=["*.json", "*.safetensors"],
|
||||
)
|
||||
)
|
||||
return model_path
|
||||
|
||||
|
||||
def upload_to_hub(path: str, upload_repo: str, hf_path: str):
|
||||
"""
|
||||
Uploads the model to Hugging Face hub.
|
||||
|
||||
Args:
|
||||
path (str): Local path to the model.
|
||||
upload_repo (str): Name of the HF repo to upload to.
|
||||
hf_path (str): Path to the original Hugging Face model.
|
||||
"""
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi, ModelCard, logging
|
||||
|
||||
content = dedent(
|
||||
f"""
|
||||
---
|
||||
language: en
|
||||
license: other
|
||||
library: mlx
|
||||
tags:
|
||||
- mlx
|
||||
---
|
||||
|
||||
The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was
|
||||
converted to MLX format from
|
||||
[{hf_path}](https://huggingface.co/{hf_path}).
|
||||
|
||||
This model is intended to be used with the [EnCodec MLX
|
||||
example](https://github.com/ml-explore/mlx-examples/tree/main/encodec).
|
||||
"""
|
||||
)
|
||||
|
||||
card = ModelCard(content)
|
||||
card.save(os.path.join(path, "README.md"))
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
api = HfApi()
|
||||
api.create_repo(repo_id=upload_repo, exist_ok=True)
|
||||
api.upload_folder(
|
||||
folder_path=path,
|
||||
repo_id=upload_repo,
|
||||
repo_type="model",
|
||||
multi_commits=True,
|
||||
multi_commits_verbose=True,
|
||||
)
|
||||
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
||||
|
||||
|
||||
def save_weights(save_path: Union[str, Path], weights: Dict[str, Any]) -> None:
|
||||
if isinstance(save_path, str):
|
||||
save_path = Path(save_path)
|
||||
save_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
total_size = sum(v.nbytes for v in weights.values())
|
||||
index_data = {"metadata": {"total_size": total_size}, "weight_map": {}}
|
||||
mx.save_safetensors(
|
||||
str(save_path / "model.safetensors"), weights, metadata={"format": "mlx"}
|
||||
)
|
||||
|
||||
for weight_name in weights.keys():
|
||||
index_data["weight_map"][weight_name] = "model.safetensors"
|
||||
|
||||
index_data["weight_map"] = {
|
||||
k: index_data["weight_map"][k] for k in sorted(index_data["weight_map"])
|
||||
}
|
||||
|
||||
with open(save_path / "model.safetensors.index.json", "w") as f:
|
||||
json.dump(index_data, f, indent=4)
|
||||
|
||||
|
||||
def save_config(
|
||||
config: dict,
|
||||
config_path: Union[str, Path],
|
||||
) -> None:
|
||||
"""Save the model configuration to the ``config_path``.
|
||||
|
||||
The final configuration will be sorted before saving for better readability.
|
||||
|
||||
Args:
|
||||
config (dict): The model configuration.
|
||||
config_path (Union[str, Path]): Model configuration file path.
|
||||
"""
|
||||
# Clean unused keys
|
||||
config.pop("_name_or_path", None)
|
||||
|
||||
# sort the config for better readability
|
||||
config = dict(sorted(config.items()))
|
||||
|
||||
# write the updated config to the config_path (if provided)
|
||||
with open(config_path, "w") as fid:
|
||||
json.dump(config, fid, indent=4)
|
||||
|
||||
|
||||
def convert(
|
||||
upload: bool,
|
||||
model: str,
|
||||
dtype: str = None,
|
||||
):
|
||||
hf_repo = f"facebook/encodec_{model}"
|
||||
mlx_repo = f"mlx-community/encodec-{model}-{dtype}"
|
||||
path = fetch_from_hub(hf_repo)
|
||||
save_path = Path("mlx_models")
|
||||
|
||||
weights = mx.load(str(Path(path) / "model.safetensors"))
|
||||
|
||||
with open(path / "config.json", "r") as fid:
|
||||
config = SimpleNamespace(**json.load(fid))
|
||||
|
||||
model = encodec.EncodecModel(config)
|
||||
|
||||
new_weights = {}
|
||||
for k, v in weights.items():
|
||||
basename, pname = k.rsplit(".", 1)
|
||||
if pname == "weight_v":
|
||||
g = weights[basename + ".weight_g"]
|
||||
v = g * (v / mx.linalg.norm(v, axis=(1, 2), keepdims=True))
|
||||
k = basename + ".weight"
|
||||
elif pname in ["weight_g", "embed_avg", "cluster_size", "inited"]:
|
||||
continue
|
||||
elif "lstm" in basename:
|
||||
w_or_b, ih_or_hh, ln = pname.split("_")
|
||||
if w_or_b == "weight":
|
||||
new_pname = "Wx" if ih_or_hh == "ih" else "Wh"
|
||||
elif w_or_b == "bias" and ih_or_hh == "ih":
|
||||
continue
|
||||
else:
|
||||
v = v + weights[k.replace("_hh_", "_ih_")]
|
||||
new_pname = "bias"
|
||||
k = basename + "." + ln[1:] + "." + new_pname
|
||||
if "conv.weight" in k:
|
||||
# Possibly a transposed conv which has a different order
|
||||
if "decoder" in k:
|
||||
ln = int(k.split(".")[2])
|
||||
if "conv" in model.decoder.layers[ln] and isinstance(
|
||||
model.decoder.layers[ln].conv, nn.ConvTranspose1d
|
||||
):
|
||||
v = mx.moveaxis(v, 0, 2)
|
||||
else:
|
||||
v = mx.moveaxis(v, 1, 2)
|
||||
else:
|
||||
v = mx.moveaxis(v, 1, 2)
|
||||
|
||||
new_weights[k] = v
|
||||
weights = new_weights
|
||||
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
if dtype is not None:
|
||||
t = getattr(mx, dtype)
|
||||
weights = {k: v.astype(t) for k, v in weights.items()}
|
||||
|
||||
if isinstance(save_path, str):
|
||||
save_path = Path(save_path)
|
||||
|
||||
save_weights(save_path, weights)
|
||||
|
||||
save_config(vars(config), config_path=save_path / "config.json")
|
||||
|
||||
if upload:
|
||||
upload_to_hub(save_path, mlx_repo, hf_repo)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert EnCodec weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="48khz",
|
||||
help="",
|
||||
choices=["24khz", "32khz", "48khz"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--upload",
|
||||
action="store_true",
|
||||
help="Upload the weights to Hugging Face.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
type=str,
|
||||
help="Data type to convert the model to.",
|
||||
default="float32",
|
||||
choices=["float32", "bfloat16", "float16"],
|
||||
)
|
||||
args = parser.parse_args()
|
||||
convert(upload=args.upload, model=args.model, dtype=args.dtype)
|
671
encodec/encodec.py
Normal file
671
encodec/encodec.py
Normal file
@ -0,0 +1,671 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
_lstm_kernel = mx.fast.metal_kernel(
|
||||
name="lstm",
|
||||
input_names=["x", "h_in", "cell", "hidden_size", "time_step", "num_time_steps"],
|
||||
output_names=["hidden_state", "cell_state"],
|
||||
header="""
|
||||
template <typename T>
|
||||
T sigmoid(T x) {
|
||||
auto y = 1 / (1 + metal::exp(-metal::abs(x)));
|
||||
return (x < 0) ? 1 - y : y;
|
||||
}
|
||||
""",
|
||||
source="""
|
||||
uint b = thread_position_in_grid.x;
|
||||
uint d = hidden_size * 4;
|
||||
|
||||
uint elem = b * d + thread_position_in_grid.y;
|
||||
uint index = elem;
|
||||
uint x_index = b * num_time_steps * d + time_step * d + index;
|
||||
|
||||
auto i = sigmoid(h_in[index] + x[x_index]);
|
||||
index += hidden_size;
|
||||
x_index += hidden_size;
|
||||
auto f = sigmoid(h_in[index] + x[x_index]);
|
||||
index += hidden_size;
|
||||
x_index += hidden_size;
|
||||
auto g = metal::precise::tanh(h_in[index] + x[x_index]);
|
||||
index += hidden_size;
|
||||
x_index += hidden_size;
|
||||
auto o = sigmoid(h_in[index] + x[x_index]);
|
||||
|
||||
cell_state[elem] = f * cell[elem] + i * g;
|
||||
hidden_state[elem] = o * metal::precise::tanh(cell_state[elem]);
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def lstm_custom(x, h_in, cell, time_step):
|
||||
assert x.ndim == 3, "Input to LSTM must have 3 dimensions."
|
||||
out_shape = cell.shape
|
||||
return _lstm_kernel(
|
||||
inputs=[x, h_in, cell, out_shape[-1], time_step, x.shape[-2]],
|
||||
output_shapes=[out_shape, out_shape],
|
||||
output_dtypes=[h_in.dtype, h_in.dtype],
|
||||
grid=(x.shape[0], h_in.size // 4, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
)
|
||||
|
||||
|
||||
class LSTM(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
hidden_size: int,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.Wx = mx.zeros((4 * hidden_size, input_size))
|
||||
self.Wh = mx.zeros((4 * hidden_size, hidden_size))
|
||||
self.bias = mx.zeros((4 * hidden_size,)) if bias else None
|
||||
|
||||
def __call__(self, x, hidden=None, cell=None):
|
||||
if self.bias is not None:
|
||||
x = mx.addmm(self.bias, x, self.Wx.T)
|
||||
else:
|
||||
x = x @ self.Wx.T
|
||||
|
||||
all_hidden = []
|
||||
|
||||
B = x.shape[0]
|
||||
cell = cell or mx.zeros((B, self.hidden_size), x.dtype)
|
||||
for t in range(x.shape[-2]):
|
||||
if hidden is None:
|
||||
hidden = mx.zeros((B, self.hidden_size * 4), x.dtype)
|
||||
else:
|
||||
hidden = hidden @ self.Wh.T
|
||||
hidden, cell = lstm_custom(x, hidden, cell, t)
|
||||
all_hidden.append(hidden)
|
||||
|
||||
return mx.stack(all_hidden, axis=-2)
|
||||
|
||||
|
||||
class EncodecConv1d(nn.Module):
|
||||
"""Conv1d with asymmetric or causal padding and normalization."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
dilation: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.causal = config.use_causal_conv
|
||||
self.pad_mode = config.pad_mode
|
||||
self.norm_type = config.norm_type
|
||||
|
||||
self.conv = nn.Conv1d(
|
||||
in_channels, out_channels, kernel_size, stride, dilation=dilation
|
||||
)
|
||||
if self.norm_type == "time_group_norm":
|
||||
self.norm = nn.GroupNorm(1, out_channels, pytorch_compatible=True)
|
||||
|
||||
self.stride = stride
|
||||
|
||||
# Effective kernel size with dilations.
|
||||
self.kernel_size = (kernel_size - 1) * dilation + 1
|
||||
|
||||
self.padding_total = kernel_size - stride
|
||||
|
||||
def _get_extra_padding_for_conv1d(
|
||||
self,
|
||||
hidden_states: mx.array,
|
||||
) -> mx.array:
|
||||
length = hidden_states.shape[1]
|
||||
n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1
|
||||
n_frames = int(math.ceil(n_frames)) - 1
|
||||
ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total
|
||||
return ideal_length - length
|
||||
|
||||
def _pad1d(
|
||||
self,
|
||||
hidden_states: mx.array,
|
||||
paddings: Tuple[int, int],
|
||||
mode: str = "zero",
|
||||
value: float = 0.0,
|
||||
):
|
||||
if mode != "reflect":
|
||||
return mx.pad(
|
||||
hidden_states, paddings, mode="constant", constant_values=value
|
||||
)
|
||||
|
||||
length = hidden_states.shape[1]
|
||||
prefix = hidden_states[:, 1 : paddings[0] + 1][:, ::-1]
|
||||
suffix = hidden_states[:, max(length - (paddings[1] + 1), 0) : -1][:, ::-1]
|
||||
return mx.concatenate([prefix, hidden_states, suffix], axis=1)
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
extra_padding = self._get_extra_padding_for_conv1d(hidden_states)
|
||||
|
||||
if self.causal:
|
||||
# Left padding for causal
|
||||
hidden_states = self._pad1d(
|
||||
hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode
|
||||
)
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = self.padding_total // 2
|
||||
padding_left = self.padding_total - padding_right
|
||||
hidden_states = self._pad1d(
|
||||
hidden_states,
|
||||
(padding_left, padding_right + extra_padding),
|
||||
mode=self.pad_mode,
|
||||
)
|
||||
|
||||
hidden_states = self.conv(hidden_states)
|
||||
|
||||
if self.norm_type == "time_group_norm":
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecConvTranspose1d(nn.Module):
|
||||
"""ConvTranspose1d with asymmetric or causal padding and normalization."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.causal = config.use_causal_conv
|
||||
self.trim_right_ratio = config.trim_right_ratio
|
||||
self.norm_type = config.norm_type
|
||||
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride)
|
||||
if config.norm_type == "time_group_norm":
|
||||
self.norm = nn.GroupNorm(1, out_channels, pytorch_compatible=True)
|
||||
self.padding_total = kernel_size - stride
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
hidden_states = self.conv(hidden_states)
|
||||
|
||||
if self.norm_type == "time_group_norm":
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
if self.causal:
|
||||
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
|
||||
else:
|
||||
padding_right = self.padding_total // 2
|
||||
|
||||
padding_left = self.padding_total - padding_right
|
||||
|
||||
end = hidden_states.shape[1] - padding_right
|
||||
hidden_states = hidden_states[:, padding_left:end, :]
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecLSTM(nn.Module):
|
||||
def __init__(self, config, dimension):
|
||||
super().__init__()
|
||||
self.lstm = [LSTM(dimension, dimension) for _ in range(config.num_lstm_layers)]
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
h = hidden_states
|
||||
for lstm in self.lstm:
|
||||
h = lstm(h)
|
||||
return h + hidden_states
|
||||
|
||||
|
||||
class EncodecResnetBlock(nn.Module):
|
||||
"""
|
||||
Residual block from SEANet model as used by EnCodec.
|
||||
"""
|
||||
|
||||
def __init__(self, config, dim: int, dilations: List[int]):
|
||||
super().__init__()
|
||||
kernel_sizes = (config.residual_kernel_size, 1)
|
||||
if len(kernel_sizes) != len(dilations):
|
||||
raise ValueError("Number of kernel sizes should match number of dilations")
|
||||
|
||||
hidden = dim // config.compress
|
||||
block = []
|
||||
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
|
||||
in_chs = dim if i == 0 else hidden
|
||||
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
|
||||
block += [nn.ELU()]
|
||||
block += [
|
||||
EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)
|
||||
]
|
||||
self.block = block
|
||||
|
||||
if getattr(config, "use_conv_shortcut", True):
|
||||
self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1)
|
||||
else:
|
||||
self.shortcut = nn.Identity()
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
residual = hidden_states
|
||||
for layer in self.block:
|
||||
hidden_states = layer(hidden_states)
|
||||
|
||||
return self.shortcut(residual) + hidden_states
|
||||
|
||||
|
||||
class EncodecEncoder(nn.Module):
|
||||
"""SEANet encoder as used by EnCodec."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
model = [
|
||||
EncodecConv1d(
|
||||
config, config.audio_channels, config.num_filters, config.kernel_size
|
||||
)
|
||||
]
|
||||
scaling = 1
|
||||
|
||||
for ratio in reversed(config.upsampling_ratios):
|
||||
current_scale = scaling * config.num_filters
|
||||
for j in range(config.num_residual_layers):
|
||||
model += [
|
||||
EncodecResnetBlock(
|
||||
config, current_scale, [config.dilation_growth_rate**j, 1]
|
||||
)
|
||||
]
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
current_scale,
|
||||
current_scale * 2,
|
||||
kernel_size=ratio * 2,
|
||||
stride=ratio,
|
||||
)
|
||||
]
|
||||
scaling *= 2
|
||||
|
||||
model += [EncodecLSTM(config, scaling * config.num_filters)]
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
scaling * config.num_filters,
|
||||
config.hidden_size,
|
||||
config.last_kernel_size,
|
||||
)
|
||||
]
|
||||
|
||||
self.layers = model
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecDecoder(nn.Module):
|
||||
"""SEANet decoder as used by EnCodec."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
scaling = int(2 ** len(config.upsampling_ratios))
|
||||
model = [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
config.hidden_size,
|
||||
scaling * config.num_filters,
|
||||
config.kernel_size,
|
||||
)
|
||||
]
|
||||
|
||||
model += [EncodecLSTM(config, scaling * config.num_filters)]
|
||||
|
||||
for ratio in config.upsampling_ratios:
|
||||
current_scale = scaling * config.num_filters
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConvTranspose1d(
|
||||
config,
|
||||
current_scale,
|
||||
current_scale // 2,
|
||||
kernel_size=ratio * 2,
|
||||
stride=ratio,
|
||||
)
|
||||
]
|
||||
for j in range(config.num_residual_layers):
|
||||
model += [
|
||||
EncodecResnetBlock(
|
||||
config, current_scale // 2, (config.dilation_growth_rate**j, 1)
|
||||
)
|
||||
]
|
||||
scaling //= 2
|
||||
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
config.num_filters,
|
||||
config.audio_channels,
|
||||
config.last_kernel_size,
|
||||
)
|
||||
]
|
||||
self.layers = model
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecEuclideanCodebook(nn.Module):
|
||||
"""Codebook with Euclidean distance."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.embed = mx.zeros((config.codebook_size, config.codebook_dim))
|
||||
|
||||
def quantize(self, hidden_states):
|
||||
embed = self.embed.T
|
||||
scaled_states = hidden_states.square().sum(axis=1, keepdims=True)
|
||||
dist = -(
|
||||
scaled_states
|
||||
- 2 * hidden_states @ embed
|
||||
+ embed.square().sum(axis=0, keepdims=True)
|
||||
)
|
||||
embed_ind = dist.argmax(axis=-1)
|
||||
return embed_ind
|
||||
|
||||
def encode(self, hidden_states):
|
||||
shape = hidden_states.shape
|
||||
hidden_states = hidden_states.reshape((-1, shape[-1]))
|
||||
embed_ind = self.quantize(hidden_states)
|
||||
embed_ind = embed_ind.reshape(*shape[:-1])
|
||||
return embed_ind
|
||||
|
||||
def decode(self, embed_ind):
|
||||
return self.embed[embed_ind]
|
||||
|
||||
|
||||
class EncodecVectorQuantization(nn.Module):
|
||||
"""
|
||||
Vector quantization implementation. Currently supports only euclidean distance.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.codebook = EncodecEuclideanCodebook(config)
|
||||
|
||||
def encode(self, hidden_states):
|
||||
return self.codebook.encode(hidden_states)
|
||||
|
||||
def decode(self, embed_ind):
|
||||
return self.codebook.decode(embed_ind)
|
||||
|
||||
|
||||
class EncodecResidualVectorQuantizer(nn.Module):
|
||||
"""Residual Vector Quantizer."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.codebook_size = config.codebook_size
|
||||
|
||||
hop_length = np.prod(config.upsampling_ratios)
|
||||
self.frame_rate = math.ceil(config.sampling_rate / hop_length)
|
||||
self.num_quantizers = int(
|
||||
1000 * config.target_bandwidths[-1] // (self.frame_rate * 10)
|
||||
)
|
||||
self.layers = [
|
||||
EncodecVectorQuantization(config) for _ in range(self.num_quantizers)
|
||||
]
|
||||
|
||||
def get_num_quantizers_for_bandwidth(
|
||||
self, bandwidth: Optional[float] = None
|
||||
) -> int:
|
||||
"""Return num_quantizers based on specified target bandwidth."""
|
||||
bw_per_q = math.log2(self.codebook_size) * self.frame_rate
|
||||
num_quantizers = self.num_quantizers
|
||||
if bandwidth is not None and bandwidth > 0.0:
|
||||
num_quantizers = int(max(1, math.floor(bandwidth * 1000 / bw_per_q)))
|
||||
return num_quantizers
|
||||
|
||||
def encode(
|
||||
self, embeddings: mx.array, bandwidth: Optional[float] = None
|
||||
) -> mx.array:
|
||||
"""
|
||||
Encode a given input array with the specified frame rate at the given
|
||||
bandwidth. The RVQ encode method sets the appropriate number of
|
||||
quantizers to use and returns indices for each quantizer.
|
||||
"""
|
||||
num_quantizers = self.get_num_quantizers_for_bandwidth(bandwidth)
|
||||
residual = embeddings
|
||||
all_indices = []
|
||||
for layer in self.layers[:num_quantizers]:
|
||||
indices = layer.encode(residual)
|
||||
quantized = layer.decode(indices)
|
||||
residual = residual - quantized
|
||||
all_indices.append(indices)
|
||||
out_indices = mx.stack(all_indices, axis=1)
|
||||
return out_indices
|
||||
|
||||
def decode(self, codes: mx.array) -> mx.array:
|
||||
"""Decode the given codes to the quantized representation."""
|
||||
quantized_out = None
|
||||
for i, indices in enumerate(codes.split(codes.shape[1], axis=1)):
|
||||
layer = self.layers[i]
|
||||
quantized = layer.decode(indices.squeeze(1))
|
||||
if quantized_out is None:
|
||||
quantized_out = quantized
|
||||
else:
|
||||
quantized_out = quantized + quantized_out
|
||||
return quantized_out
|
||||
|
||||
|
||||
class EncodecModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.encoder = EncodecEncoder(config)
|
||||
self.decoder = EncodecDecoder(config)
|
||||
self.quantizer = EncodecResidualVectorQuantizer(config)
|
||||
|
||||
def _encode_frame(
|
||||
self, input_values: mx.array, bandwidth: float, padding_mask: mx.array
|
||||
) -> Tuple[mx.array, Optional[mx.array]]:
|
||||
"""
|
||||
Encodes the given input using the underlying VQVAE.
|
||||
"""
|
||||
length = input_values.shape[1]
|
||||
duration = length / self.config.sampling_rate
|
||||
|
||||
if (
|
||||
self.config.chunk_length_s is not None
|
||||
and duration > 1e-5 + self.config.chunk_length_s
|
||||
):
|
||||
raise RuntimeError(
|
||||
f"Duration of frame ({duration}) is longer than chunk {self.config.chunk_length_s}"
|
||||
)
|
||||
|
||||
scale = None
|
||||
if self.config.normalize:
|
||||
# if the padding is non zero
|
||||
input_values = input_values * padding_mask[..., None]
|
||||
mono = mx.sum(input_values, axis=2, keepdims=True) / input_values.shape[2]
|
||||
scale = mono.square().mean(axis=1, keepdims=True).sqrt() + 1e-8
|
||||
input_values = input_values / scale
|
||||
|
||||
embeddings = self.encoder(input_values)
|
||||
codes = self.quantizer.encode(embeddings, bandwidth)
|
||||
return codes, scale
|
||||
|
||||
def encode(
|
||||
self,
|
||||
input_values: mx.array,
|
||||
padding_mask: mx.array = None,
|
||||
bandwidth: Optional[float] = None,
|
||||
) -> Tuple[mx.array, Optional[mx.array]]:
|
||||
"""
|
||||
Encodes the input audio waveform into discrete codes.
|
||||
|
||||
Args:
|
||||
input_values (mx.array): The input audio waveform with shape
|
||||
``(batch_size, channels, sequence_length)``.
|
||||
padding_mask (mx.array): Padding mask used to pad the ``input_values``.
|
||||
bandwidth (float, optional): The target bandwidth. Must be one of
|
||||
``config.target_bandwidths``. If ``None``, uses the smallest
|
||||
possible bandwidth. bandwidth is represented as a thousandth of
|
||||
what it is, e.g. 6kbps bandwidth is represented as bandwidth == 6.0
|
||||
|
||||
Returns:
|
||||
A list of frames containing the discrete encoded codes for the
|
||||
input audio waveform, along with rescaling factors for each chunk
|
||||
when ``config.normalize==True``. Each frame is a tuple ``(codebook,
|
||||
scale)``, with ``codebook`` of shape ``(batch_size, num_codebooks,
|
||||
frames)``.
|
||||
"""
|
||||
|
||||
if bandwidth is None:
|
||||
bandwidth = self.config.target_bandwidths[0]
|
||||
if bandwidth not in self.config.target_bandwidths:
|
||||
raise ValueError(
|
||||
f"This model doesn't support the bandwidth {bandwidth}. "
|
||||
f"Select one of {self.config.target_bandwidths}."
|
||||
)
|
||||
|
||||
_, input_length, channels = input_values.shape
|
||||
|
||||
if channels < 1 or channels > 2:
|
||||
raise ValueError(
|
||||
f"Number of audio channels must be 1 or 2, but got {channels}"
|
||||
)
|
||||
|
||||
chunk_length = self.chunk_length
|
||||
if chunk_length is None:
|
||||
chunk_length = input_length
|
||||
stride = input_length
|
||||
else:
|
||||
stride = self.chunk_stride
|
||||
|
||||
if padding_mask is None:
|
||||
padding_mask = mx.ones(input_values.shape[:2], dtype=mx.bool_)
|
||||
encoded_frames = []
|
||||
scales = []
|
||||
|
||||
step = chunk_length - stride
|
||||
if (input_length % stride) != step:
|
||||
raise ValueError(
|
||||
"The input length is not properly padded for batched chunked "
|
||||
"encoding. Make sure to pad the input correctly."
|
||||
)
|
||||
|
||||
for offset in range(0, input_length - step, stride):
|
||||
mask = padding_mask[:, offset : offset + chunk_length].astype(mx.bool_)
|
||||
frame = input_values[:, offset : offset + chunk_length]
|
||||
encoded_frame, scale = self._encode_frame(frame, bandwidth, mask)
|
||||
encoded_frames.append(encoded_frame)
|
||||
scales.append(scale)
|
||||
|
||||
encoded_frames = mx.stack(encoded_frames)
|
||||
|
||||
return (encoded_frames, scales)
|
||||
|
||||
@staticmethod
|
||||
def _linear_overlap_add(frames: List[mx.array], stride: int):
|
||||
if len(frames) == 0:
|
||||
raise ValueError("`frames` cannot be an empty list.")
|
||||
|
||||
dtype = frames[0].dtype
|
||||
N, frame_length, C = frames[0].shape
|
||||
total_size = stride * (len(frames) - 1) + frames[-1].shape[1]
|
||||
|
||||
time_vec = mx.linspace(0, 1, frame_length + 2, dtype=dtype)[1:-1]
|
||||
weight = 0.5 - (time_vec - 0.5).abs()
|
||||
|
||||
weight = weight[:, None]
|
||||
sum_weight = mx.zeros((total_size, 1), dtype=dtype)
|
||||
out = mx.zeros((N, total_size, C), dtype=dtype)
|
||||
offset = 0
|
||||
|
||||
for frame in frames:
|
||||
frame_length = frame.shape[1]
|
||||
out[:, offset : offset + frame_length] += weight[:frame_length] * frame
|
||||
sum_weight[offset : offset + frame_length] += weight[:frame_length]
|
||||
offset += stride
|
||||
|
||||
return out / sum_weight
|
||||
|
||||
def _decode_frame(
|
||||
self, codes: mx.array, scale: Optional[mx.array] = None
|
||||
) -> mx.array:
|
||||
embeddings = self.quantizer.decode(codes)
|
||||
outputs = self.decoder(embeddings)
|
||||
if scale is not None:
|
||||
outputs = outputs * scale
|
||||
return outputs
|
||||
|
||||
@property
|
||||
def channels(self):
|
||||
return self.config.audio_channels
|
||||
|
||||
@property
|
||||
def sampling_rate(self):
|
||||
return self.config.sampling_rate
|
||||
|
||||
@property
|
||||
def chunk_length(self):
|
||||
if self.config.chunk_length_s is None:
|
||||
return None
|
||||
else:
|
||||
return int(self.config.chunk_length_s * self.config.sampling_rate)
|
||||
|
||||
@property
|
||||
def chunk_stride(self):
|
||||
if self.config.chunk_length_s is None or self.config.overlap is None:
|
||||
return None
|
||||
else:
|
||||
return max(1, int((1.0 - self.config.overlap) * self.chunk_length))
|
||||
|
||||
def decode(
|
||||
self,
|
||||
audio_codes: mx.array,
|
||||
audio_scales: Union[mx.array, List[mx.array]],
|
||||
padding_mask: Optional[mx.array] = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
"""
|
||||
Decodes the given frames into an output audio waveform.
|
||||
|
||||
Note that the output might be a bit bigger than the input. In that
|
||||
case, any extra steps at the end should be trimmed.
|
||||
|
||||
Args:
|
||||
audio_codes (mx.array): Discret code embeddings of shape
|
||||
``(batch_size, nb_chunks, chunk_length)``.
|
||||
audio_scales (mx.array): Scaling factor for each input.
|
||||
padding_mask (mx.array): Padding mask.
|
||||
"""
|
||||
chunk_length = self.chunk_length
|
||||
if chunk_length is None:
|
||||
if audio_codes.shape[1] != 1:
|
||||
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
|
||||
audio_values = self._decode_frame(audio_codes[:, 0], audio_scales[0])
|
||||
else:
|
||||
decoded_frames = []
|
||||
|
||||
for frame, scale in zip(audio_codes, audio_scales):
|
||||
frames = self._decode_frame(frame, scale)
|
||||
decoded_frames.append(frames)
|
||||
|
||||
audio_values = self._linear_overlap_add(
|
||||
decoded_frames, self.chunk_stride or 1
|
||||
)
|
||||
|
||||
# truncate based on padding mask
|
||||
if padding_mask is not None and padding_mask.shape[1] < audio_values.shape[1]:
|
||||
audio_values = audio_values[:, : padding_mask.shape[1]]
|
||||
return audio_values
|
37
encodec/example.py
Normal file
37
encodec/example.py
Normal file
@ -0,0 +1,37 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
from utils import load, load_audio, save_audio
|
||||
|
||||
# Load the 48 KHz model and preprocessor.
|
||||
model, processor = load("mlx-community/encodec-48khz-float32")
|
||||
|
||||
# Load an audio file
|
||||
audio = load_audio("/path/to/audio", model.sampling_rate, model.channels)
|
||||
|
||||
# Preprocess the audio (this can also be a list of arrays for batched
|
||||
# processing).
|
||||
feats, mask = processor(audio)
|
||||
|
||||
|
||||
# Encode at the given bandwidth. A lower bandwidth results in more
|
||||
# compression but lower reconstruction quality.
|
||||
@mx.compile
|
||||
def encode(feats, mask):
|
||||
return model.encode(feats, mask, bandwidth=3)
|
||||
|
||||
|
||||
# Decode to reconstruct the audio
|
||||
@mx.compile
|
||||
def decode(codes, scales, mask):
|
||||
return model.decode(codes, scales, mask)
|
||||
|
||||
|
||||
codes, scales = encode(feats, mask)
|
||||
reconstructed = decode(codes, scales, mask)
|
||||
|
||||
# Trim any padding:
|
||||
reconstructed = reconstructed[0, : len(audio)]
|
||||
|
||||
# Save the audio as a wave file
|
||||
save_audio("reconstructed.wav", reconstructed, model.sampling_rate)
|
3
encodec/requirements.txt
Normal file
3
encodec/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
mlx>=0.18
|
||||
numpy
|
||||
huggingface_hub
|
66
encodec/test.py
Normal file
66
encodec/test.py
Normal file
@ -0,0 +1,66 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import Audio, load_dataset
|
||||
from transformers import AutoProcessor, EncodecModel
|
||||
from utils import load, load_audio, preprocess_audio
|
||||
|
||||
|
||||
def compare_processors():
|
||||
np.random.seed(0)
|
||||
audio_length = 95500
|
||||
audio = np.random.uniform(size=(2, audio_length)).astype(np.float32)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/encodec_48khz")
|
||||
|
||||
pt_inputs = processor(
|
||||
raw_audio=audio, sampling_rate=processor.sampling_rate, return_tensors="pt"
|
||||
)
|
||||
mx_inputs = preprocess_audio(
|
||||
mx.array(audio).T,
|
||||
processor.sampling_rate,
|
||||
processor.chunk_length,
|
||||
processor.chunk_stride,
|
||||
)
|
||||
|
||||
assert np.array_equal(pt_inputs["input_values"], mx_inputs[0].moveaxis(2, 1))
|
||||
assert np.array_equal(pt_inputs["padding_mask"], mx_inputs[1])
|
||||
|
||||
|
||||
def compare_models():
|
||||
pt_model = EncodecModel.from_pretrained("facebook/encodec_48khz")
|
||||
mx_model, _ = load("mlx-community/encodec-48khz-float32")
|
||||
|
||||
np.random.seed(0)
|
||||
audio_length = 190560
|
||||
audio = np.random.uniform(size=(1, audio_length, 2)).astype(np.float32)
|
||||
mask = np.ones((1, audio_length), dtype=np.int32)
|
||||
pt_encoded = pt_model.encode(
|
||||
torch.tensor(audio).moveaxis(2, 1), torch.tensor(mask)[None]
|
||||
)
|
||||
mx_encoded = mx_model.encode(mx.array(audio), mx.array(mask))
|
||||
pt_codes = pt_encoded.audio_codes.numpy()
|
||||
mx_codes = mx_encoded[0]
|
||||
assert np.array_equal(pt_codes, mx_codes), "Encoding codes mismatch"
|
||||
|
||||
for mx_scale, pt_scale in zip(mx_encoded[1], pt_encoded.audio_scales):
|
||||
if mx_scale is not None:
|
||||
pt_scale = pt_scale.numpy()
|
||||
assert np.allclose(pt_scale, mx_scale, atol=1e-3, rtol=1e-4)
|
||||
|
||||
pt_audio = pt_model.decode(
|
||||
pt_encoded.audio_codes, pt_encoded.audio_scales, torch.tensor(mask)[None]
|
||||
)
|
||||
pt_audio = pt_audio[0].squeeze().T.detach().numpy()
|
||||
mx_audio = mx_model.decode(*mx_encoded, mx.array(mask))
|
||||
mx_audio = mx_audio.squeeze()
|
||||
assert np.allclose(
|
||||
pt_audio, mx_audio, atol=1e-4, rtol=1e-4
|
||||
), "Decoding audio mismatch"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
compare_processors()
|
||||
compare_models()
|
129
encodec/utils.py
Normal file
129
encodec/utils.py
Normal file
@ -0,0 +1,129 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import functools
|
||||
import json
|
||||
from pathlib import Path
|
||||
from types import SimpleNamespace
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
import encodec
|
||||
|
||||
|
||||
def save_audio(file: str, audio: mx.array, sampling_rate: int):
|
||||
"""
|
||||
Save audio to a wave (.wav) file.
|
||||
"""
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
audio = (audio * 32767).astype(mx.int16)
|
||||
write(file, sampling_rate, np.array(audio))
|
||||
|
||||
|
||||
def load_audio(file: str, sampling_rate: int, channels: int):
|
||||
"""
|
||||
Read audio into an mx.array, resampling if necessary.
|
||||
|
||||
Args:
|
||||
file (str): The audio file to open.
|
||||
sampling_rate (int): The sample rate to resample the audio at if needed.
|
||||
channels (int): The number of audio channels.
|
||||
|
||||
Returns:
|
||||
An mx.array containing the audio waveform in float32.
|
||||
"""
|
||||
from subprocess import CalledProcessError, run
|
||||
|
||||
# This launches a subprocess to decode audio while down-mixing
|
||||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||||
# fmt: off
|
||||
cmd = [
|
||||
"ffmpeg",
|
||||
"-nostdin",
|
||||
"-threads", "0",
|
||||
"-i", file,
|
||||
"-f", "s16le",
|
||||
"-ac", str(channels),
|
||||
"-acodec", "pcm_s16le",
|
||||
"-ar", str(sampling_rate),
|
||||
"-"
|
||||
]
|
||||
# fmt: on
|
||||
try:
|
||||
out = run(cmd, capture_output=True, check=True).stdout
|
||||
except CalledProcessError as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||
|
||||
out = mx.array(np.frombuffer(out, np.int16))
|
||||
return out.reshape(-1, channels).astype(mx.float32) / 32767.0
|
||||
|
||||
|
||||
def preprocess_audio(
|
||||
raw_audio: Union[mx.array, List[mx.array]],
|
||||
sampling_rate: int = 24000,
|
||||
chunk_length: Optional[int] = None,
|
||||
chunk_stride: Optional[int] = None,
|
||||
):
|
||||
r"""
|
||||
Prepare inputs for the EnCodec model.
|
||||
|
||||
Args:
|
||||
raw_audio (mx.array or List[mx.array]): The sequence or batch of
|
||||
sequences to be processed.
|
||||
sampling_rate (int): The sampling rate at which the audio waveform
|
||||
should be digitalized.
|
||||
chunk_length (int, optional): The model's chunk length.
|
||||
chunk_stride (int, optional): The model's chunk stride.
|
||||
"""
|
||||
if not isinstance(raw_audio, list):
|
||||
raw_audio = [raw_audio]
|
||||
|
||||
raw_audio = [x[..., None] if x.ndim == 1 else x for x in raw_audio]
|
||||
|
||||
max_length = max(array.shape[0] for array in raw_audio)
|
||||
if chunk_length is not None:
|
||||
max_length += chunk_length - (max_length % chunk_stride)
|
||||
|
||||
inputs = []
|
||||
masks = []
|
||||
for x in raw_audio:
|
||||
length = x.shape[0]
|
||||
mask = mx.ones((length,), dtype=mx.bool_)
|
||||
difference = max_length - length
|
||||
if difference > 0:
|
||||
mask = mx.pad(mask, (0, difference))
|
||||
x = mx.pad(x, ((0, difference), (0, 0)))
|
||||
inputs.append(x)
|
||||
masks.append(mask)
|
||||
return mx.stack(inputs), mx.stack(masks)
|
||||
|
||||
|
||||
def load(path_or_repo):
|
||||
"""
|
||||
Load the model and audo preprocessor.
|
||||
"""
|
||||
path = Path(path_or_repo)
|
||||
if not path.exists():
|
||||
path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_repo,
|
||||
allow_patterns=["*.json", "*.safetensors", "*.model"],
|
||||
)
|
||||
)
|
||||
|
||||
with open(path / "config.json", "r") as f:
|
||||
config = SimpleNamespace(**json.load(f))
|
||||
|
||||
model = encodec.EncodecModel(config)
|
||||
model.load_weights(str(path / "model.safetensors"))
|
||||
processor = functools.partial(
|
||||
preprocess_audio,
|
||||
sampling_rate=config.sampling_rate,
|
||||
chunk_length=model.chunk_length,
|
||||
chunk_stride=model.chunk_stride,
|
||||
)
|
||||
mx.eval(model)
|
||||
return model, processor
|
Loading…
Reference in New Issue
Block a user