Generalize HF datasets to a collection of HF dataasets via datasets, adds support for custom chat HF datasets (#1088), and fixes (#1087)

This commit is contained in:
Chime Ogbuji 2024-11-03 19:11:54 -05:00
parent 331148d8ec
commit 9df7bbbe3a

View File

@ -1,6 +1,6 @@
import json
from pathlib import Path
from typing import Dict, List
from typing import Dict, List, Union
from transformers import PreTrainedTokenizer
@ -29,12 +29,18 @@ class ChatDataset(Dataset):
https://platform.openai.com/docs/guides/fine-tuning/example-format
"""
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer):
def __init__(
self,
data: List[Dict[str, str]],
tokenizer: PreTrainedTokenizer,
chat_key: str = "messages",
):
super().__init__(data)
self._tokenizer = tokenizer
self._chat_key = chat_key
def __getitem__(self, idx: int):
messages = self._data[idx]["messages"]
messages = self._data[idx][self._chat_key]
text = self._tokenizer.apply_chat_template(
messages,
tools=self._data[idx].get("tools", None),
@ -76,6 +82,29 @@ class CompletionsDataset(Dataset):
return text
class CompletionsDatasetCollection:
def __init__(self, data: List[Union[ChatDataset, CompletionsDataset]]):
self.collection = data
def __getitem__(self, idx: int):
item = next(self.collection)
curr_idx = idx
while True:
try:
if (curr_idx + 1) < len(item):
return item[curr_idx]
else:
curr_idx -= len(item)
item = next(self.collection)
except StopIteration:
raise IndexError(idx)
def __len__(self):
return sum(map(len, self.collection))
def create_dataset(data, tokenizer: PreTrainedTokenizer = None):
sample = data[0]
@ -127,14 +156,14 @@ def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
import datasets
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature = hf_args.get("text_feature")
prompt_feature = hf_args.get("prompt_feature")
completion_feature = hf_args.get("completion_feature")
def create_hf_dataset(split: str = None):
def create_hf_dataset(
dataset_name: Union[None, str],
text_feature: Union[None, str],
prompt_feature: Union[None, str],
completion_feature: Union[None, str],
chat_feature: Union[None, str],
split: str = None,
):
ds = datasets.load_dataset(
dataset_name,
split=split,
@ -142,25 +171,93 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
)
if prompt_feature and completion_feature:
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
elif chat_feature:
return ChatDataset(ds, tokenizer, chat_key=chat_feature)
elif text_feature:
return Dataset(train_ds, text_key=text_feature)
return Dataset(ds, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature or a text "
"feature for the Hugging Face dataset."
)
if args.train:
def get_hf_custom_features(hf_args):
return (
hf_args.get("text_feature"),
hf_args.get("prompt_feature"),
hf_args.get("completion_feature"),
hf_args.get("chat_feature"),
)
def get_train_and_valid_splits(hf_args, ds_name):
train_split = hf_args.get("train_split", "train[:80%]")
valid_split = hf_args.get("valid_split", "train[-10%:]")
train = create_hf_dataset(split=train_split)
valid = create_hf_dataset(split=valid_split)
text_f, prompt_f, completion_f, chat_f = get_hf_custom_features(hf_args)
train = create_hf_dataset(
ds_name, text_f, prompt_f, completion_f, chat_f, split=train_split
)
valid = create_hf_dataset(
ds_name, text_f, prompt_f, completion_f, chat_f, split=valid_split
)
return train, valid
if args.datasets:
dataset_collection = args.hf_datasets
train_collection = []
valid_collection = []
test_collection = []
for ds in dataset_collection:
hf_args = ds["hf_dataset"]
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature, prompt_feature, completion_feature, chat_f = (
get_hf_custom_features(hf_args)
)
if args.train:
train, valid = get_train_and_valid_splits(hf_args, dataset_name)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(
dataset_name,
text_feature,
prompt_feature,
completion_feature,
chat_f,
split=hf_args.get("test_split"),
)
else:
test = []
train_collection.append(train)
valid_collection.append(valid)
test_collection.append(test)
return (
CompletionsDatasetCollection(train_collection),
CompletionsDatasetCollection(valid_collection),
CompletionsDatasetCollection(test_collection),
)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(split=hf_args.get("test_split"))
else:
test = []
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature, prompt_feature, completion_feature, chat_feature = (
get_hf_custom_features(hf_args)
)
if args.train:
train, valid = get_train_and_valid_splits(hf_args, dataset_name)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(
dataset_name,
text_feature,
prompt_feature,
completion_feature,
chat_feature,
split=hf_args.get("test_split"),
)
else:
test = []
return train, valid, test