mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
refactor(hf_llm): moving phi2 example into hf_llm (#293)
* refactor: moving phi2 example into hf_llm * chore: clean up * chore: update phi2 model args so it can load args from config * fix phi2 + nits + readme * allow any HF repo, update README * fix bug in llama --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
e74889d0fa
commit
a2402116ae
1
llms/hf_llm/.gitignore
vendored
Normal file
1
llms/hf_llm/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
mlx_model
|
@ -35,7 +35,7 @@ Run `python generate.py --help` to see all the options.
|
|||||||
|
|
||||||
### Models
|
### Models
|
||||||
|
|
||||||
The example supports Hugging Face format Mistral and Llama-style models. If the
|
The example supports Hugging Face format Mistral, Llama, and Phi-2 style models. If the
|
||||||
model you want to run is not supported, file an
|
model you want to run is not supported, file an
|
||||||
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
||||||
submit a pull request.
|
submit a pull request.
|
||||||
@ -47,11 +47,13 @@ Here are a few examples of Hugging Face models that work with this example:
|
|||||||
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
||||||
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
|
||||||
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||||
|
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
||||||
|
|
||||||
Most
|
Most
|
||||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending)
|
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
|
||||||
|
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
|
||||||
and
|
and
|
||||||
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending)
|
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
|
||||||
style models should work out of the box.
|
style models should work out of the box.
|
||||||
|
|
||||||
### Convert new models
|
### Convert new models
|
||||||
@ -72,6 +74,13 @@ For more options run:
|
|||||||
python convert.py --help
|
python convert.py --help
|
||||||
```
|
```
|
||||||
|
|
||||||
You can upload new models to the [Hugging Face MLX
|
You can upload new models to Hugging Face by specifying `--upload-repo` to
|
||||||
Community](https://huggingface.co/mlx-community) by specifying `--upload-name`
|
`convert.py`. For example, to upload a quantized Mistral-7B model to the
|
||||||
to `convert.py`.
|
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
|
||||||
|
|
||||||
|
```
|
||||||
|
python convert.py \
|
||||||
|
--hf-path mistralai/Mistral-7B-v0.1 \
|
||||||
|
-q \
|
||||||
|
--upload mlx-community/my-4bit-mistral \
|
||||||
|
```
|
||||||
|
@ -1,52 +1,95 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import copy
|
import copy
|
||||||
import glob
|
import glob
|
||||||
import json
|
import json
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
import transformers
|
import transformers
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from mlx.utils import tree_flatten
|
from mlx.utils import tree_flatten
|
||||||
from models import Model, ModelArgs
|
from utils import get_model_path, load
|
||||||
|
|
||||||
|
MAX_FILE_SIZE_GB = 15
|
||||||
|
|
||||||
|
|
||||||
def fetch_from_hub(model_path: str, local: bool):
|
def configure_parser() -> argparse.ArgumentParser:
|
||||||
if not local:
|
"""
|
||||||
model_path = snapshot_download(
|
Configures and returns the argument parser for the script.
|
||||||
repo_id=model_path,
|
|
||||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
Returns:
|
||||||
)
|
argparse.ArgumentParser: Configured argument parser.
|
||||||
|
"""
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Convert Hugging Face model to MLX format"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--hf-path", type=str, help="Path to the Hugging Face model.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--mlx-path", type=str, default="mlx_model", help="Path to save the MLX model."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-q", "--quantize", help="Generate a quantized model.", action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--q-group-size", help="Group size for quantization.", type=int, default=64
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--q-bits", help="Bits per weight for quantization.", type=int, default=4
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--dtype",
|
||||||
|
help="Type to save the parameters, ignored if -q is given.",
|
||||||
|
type=str,
|
||||||
|
choices=["float16", "bfloat16", "float32"],
|
||||||
|
default="float16",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--upload-repo",
|
||||||
|
help="The Hugging Face repo to upload the model to.",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def fetch_from_hub(
|
||||||
|
model_path: str,
|
||||||
|
) -> Tuple[Dict, dict, transformers.PreTrainedTokenizer]:
|
||||||
|
model_path = get_model_path(model_path)
|
||||||
|
|
||||||
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
||||||
if len(weight_files) == 0:
|
if not weight_files:
|
||||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
raise FileNotFoundError(f"No safetensors found in {model_path}")
|
||||||
|
|
||||||
weights = {}
|
weights = {}
|
||||||
for wf in weight_files:
|
for wf in weight_files:
|
||||||
weights.update(mx.load(wf).items())
|
weights.update(mx.load(wf).items())
|
||||||
|
|
||||||
config = transformers.AutoConfig.from_pretrained(model_path)
|
config = transformers.AutoConfig.from_pretrained(model_path)
|
||||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
|
||||||
model_path,
|
|
||||||
)
|
|
||||||
return weights, config.to_dict(), tokenizer
|
return weights, config.to_dict(), tokenizer
|
||||||
|
|
||||||
|
|
||||||
def quantize(weights, config, args):
|
def quantize(weights: dict, config: dict, args: argparse.Namespace) -> tuple:
|
||||||
quantized_config = copy.deepcopy(config)
|
"""
|
||||||
|
Applies quantization to the model weights.
|
||||||
|
|
||||||
# Load the model:
|
Args:
|
||||||
model = Model(ModelArgs.from_dict(config))
|
weights (dict): Model weights.
|
||||||
|
config (dict): Model configuration.
|
||||||
|
args (argparse.Namespace): Command-line arguments.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: Tuple containing quantized weights and config.
|
||||||
|
"""
|
||||||
|
quantized_config = copy.deepcopy(config)
|
||||||
|
model, _ = load(args.hf_path)
|
||||||
model.load_weights(list(weights.items()))
|
model.load_weights(list(weights.items()))
|
||||||
|
|
||||||
# Quantize the model:
|
|
||||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||||
|
|
||||||
# Update the config:
|
|
||||||
quantized_config["quantization"] = {
|
quantized_config["quantization"] = {
|
||||||
"group_size": args.q_group_size,
|
"group_size": args.q_group_size,
|
||||||
"bits": args.q_bits,
|
"bits": args.q_bits,
|
||||||
@ -56,8 +99,18 @@ def quantize(weights, config, args):
|
|||||||
return quantized_weights, quantized_config
|
return quantized_weights, quantized_config
|
||||||
|
|
||||||
|
|
||||||
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
def make_shards(weights: dict, max_file_size_gb: int = MAX_FILE_SIZE_GB) -> list:
|
||||||
max_file_size_bytes = max_file_size_gibibyte << 30
|
"""
|
||||||
|
Splits the weights into smaller shards.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
weights (dict): Model weights.
|
||||||
|
max_file_size_gb (int): Maximum size of each shard in gigabytes.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: List of weight shards.
|
||||||
|
"""
|
||||||
|
max_file_size_bytes = max_file_size_gb << 30
|
||||||
shards = []
|
shards = []
|
||||||
shard, shard_size = {}, 0
|
shard, shard_size = {}, 0
|
||||||
for k, v in weights.items():
|
for k, v in weights.items():
|
||||||
@ -71,17 +124,23 @@ def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
|||||||
return shards
|
return shards
|
||||||
|
|
||||||
|
|
||||||
def upload_to_hub(path: str, name: str, hf_path: str):
|
def upload_to_hub(path: str, upload_repo: str, hf_path: str):
|
||||||
|
"""
|
||||||
|
Uploads the model to Hugging Face hub.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path (str): Local path to the model.
|
||||||
|
upload_repo (str): Name of the HF repo to upload to.
|
||||||
|
hf_path (str): Path to the original Hugging Face model.
|
||||||
|
"""
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from huggingface_hub import HfApi, ModelCard, logging
|
from huggingface_hub import HfApi, ModelCard, logging
|
||||||
|
|
||||||
repo_id = f"mlx-community/{name}"
|
|
||||||
|
|
||||||
card = ModelCard.load(hf_path)
|
card = ModelCard.load(hf_path)
|
||||||
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
||||||
card.text = f"""
|
card.text = f"""
|
||||||
# {name}
|
# {upload_repo}
|
||||||
This model was converted to MLX format from [`{hf_path}`]().
|
This model was converted to MLX format from [`{hf_path}`]().
|
||||||
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
||||||
## Use with mlx
|
## Use with mlx
|
||||||
@ -97,72 +156,20 @@ python generate.py --model {repo_id} --prompt "My name is"
|
|||||||
logging.set_verbosity_info()
|
logging.set_verbosity_info()
|
||||||
|
|
||||||
api = HfApi()
|
api = HfApi()
|
||||||
api.create_repo(repo_id=repo_id, exist_ok=True)
|
api.create_repo(repo_id=upload_repo, exist_ok=True)
|
||||||
api.upload_folder(
|
api.upload_folder(
|
||||||
folder_path=path,
|
folder_path=path,
|
||||||
repo_id=repo_id,
|
repo_id=upload_repo,
|
||||||
repo_type="model",
|
repo_type="model",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(
|
parser = configure_parser()
|
||||||
description="Convert Hugging Face model to MLX format"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--hf-path",
|
|
||||||
type=str,
|
|
||||||
help="Path to the Hugging Face model.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--mlx-path",
|
|
||||||
type=str,
|
|
||||||
default="mlx_model",
|
|
||||||
help="Path to save the MLX model.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"-q",
|
|
||||||
"--quantize",
|
|
||||||
help="Generate a quantized model.",
|
|
||||||
action="store_true",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--q-group-size",
|
|
||||||
help="Group size for quantization.",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--q-bits",
|
|
||||||
help="Bits per weight for quantization.",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--dtype",
|
|
||||||
help="Type to save the parameters, ignored if -q is given.",
|
|
||||||
type=str,
|
|
||||||
choices=["float16", "bfloat16", "float32"],
|
|
||||||
default="float16",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--upload-name",
|
|
||||||
help="The name of model to upload to Hugging Face MLX Community",
|
|
||||||
type=str,
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"-l",
|
|
||||||
"--local",
|
|
||||||
action="store_true",
|
|
||||||
help="Whether the hf-path points to a local filesystem.",
|
|
||||||
default=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
print("[INFO] Loading")
|
print("[INFO] Loading")
|
||||||
weights, config, tokenizer = fetch_from_hub(args.hf_path, args.local)
|
weights, config, tokenizer = fetch_from_hub(args.hf_path)
|
||||||
|
|
||||||
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
||||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||||
@ -179,5 +186,5 @@ if __name__ == "__main__":
|
|||||||
with open(mlx_path / "config.json", "w") as fid:
|
with open(mlx_path / "config.json", "w") as fid:
|
||||||
json.dump(config, fid, indent=4)
|
json.dump(config, fid, indent=4)
|
||||||
|
|
||||||
if args.upload_name is not None and not args.local:
|
if args.upload_repo is not None:
|
||||||
upload_to_hub(mlx_path, args.upload_name, args.hf_path)
|
upload_to_hub(mlx_path, args.upload_repo, args.hf_path)
|
||||||
|
@ -1,43 +1,58 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import time
|
import time
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import models
|
from utils import generate, load
|
||||||
import transformers
|
|
||||||
|
DEFAULT_MODEL_PATH = "mlx_model"
|
||||||
|
DEFAULT_PROMPT = "hello"
|
||||||
|
DEFAULT_MAX_TOKENS = 100
|
||||||
|
DEFAULT_TEMP = 0.6
|
||||||
|
DEFAULT_SEED = 0
|
||||||
|
|
||||||
|
|
||||||
def generate(
|
def setup_arg_parser():
|
||||||
model: models.Model,
|
"""Set up and return the argument parser."""
|
||||||
tokenizer: transformers.AutoTokenizer,
|
parser = argparse.ArgumentParser(description="LLM inference script")
|
||||||
prompt: str,
|
parser.add_argument(
|
||||||
max_tokens: int,
|
"--model",
|
||||||
temp: float = 0.0,
|
type=str,
|
||||||
):
|
default="mlx_model",
|
||||||
prompt = tokenizer(
|
help="The path to the local model directory or Hugging Face repo.",
|
||||||
prompt,
|
)
|
||||||
return_tensors="np",
|
parser.add_argument(
|
||||||
return_attention_mask=False,
|
"--prompt", default=DEFAULT_PROMPT, help="Message to be processed by the model"
|
||||||
)[
|
)
|
||||||
"input_ids"
|
parser.add_argument(
|
||||||
][0]
|
"--max-tokens",
|
||||||
|
"-m",
|
||||||
|
type=int,
|
||||||
|
default=DEFAULT_MAX_TOKENS,
|
||||||
|
help="Maximum number of tokens to generate",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--temp", type=float, default=DEFAULT_TEMP, help="Sampling temperature"
|
||||||
|
)
|
||||||
|
parser.add_argument("--seed", type=int, default=DEFAULT_SEED, help="PRNG seed")
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
mx.random.seed(args.seed)
|
||||||
|
model, tokenizer = load(args.model)
|
||||||
|
print("=" * 10)
|
||||||
|
print("Prompt:", args.prompt)
|
||||||
|
prompt = tokenizer.encode(args.prompt)
|
||||||
prompt = mx.array(prompt)
|
prompt = mx.array(prompt)
|
||||||
|
|
||||||
tic = time.time()
|
tic = time.time()
|
||||||
tokens = []
|
tokens = []
|
||||||
skip = 0
|
skip = 0
|
||||||
for token, n in zip(
|
for token, n in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
||||||
models.generate(prompt, model, temp),
|
|
||||||
range(max_tokens),
|
|
||||||
):
|
|
||||||
if token == tokenizer.eos_token_id:
|
if token == tokenizer.eos_token_id:
|
||||||
break
|
break
|
||||||
|
|
||||||
if n == 0:
|
if n == 0:
|
||||||
prompt_time = time.time() - tic
|
prompt_time = time.time() - tic
|
||||||
tic = time.time()
|
tic = time.time()
|
||||||
|
|
||||||
tokens.append(token.item())
|
tokens.append(token.item())
|
||||||
s = tokenizer.decode(tokens)
|
s = tokenizer.decode(tokens)
|
||||||
print(s[skip:], end="", flush=True)
|
print(s[skip:], end="", flush=True)
|
||||||
@ -55,34 +70,6 @@ def generate(
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="inference script")
|
parser = setup_arg_parser()
|
||||||
parser.add_argument(
|
|
||||||
"--model",
|
|
||||||
type=str,
|
|
||||||
default="mlx_model",
|
|
||||||
help="The path to the local model directory or Hugging Face repo.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--prompt",
|
|
||||||
help="The message to be processed by the model",
|
|
||||||
default="In the beginning the Universe was created.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-tokens",
|
|
||||||
"-m",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="Maximum number of tokens to generate",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--temp",
|
|
||||||
help="The sampling temperature.",
|
|
||||||
type=float,
|
|
||||||
default=0.0,
|
|
||||||
)
|
|
||||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
mx.random.seed(args.seed)
|
main(args)
|
||||||
model, tokenizer = models.load(args.model)
|
|
||||||
generate(model, tokenizer, args.prompt, args.max_tokens, args.temp)
|
|
||||||
|
0
llms/hf_llm/models/.gitignore
vendored
Normal file
0
llms/hf_llm/models/.gitignore
vendored
Normal file
0
llms/hf_llm/models/__init__.py
Normal file
0
llms/hf_llm/models/__init__.py
Normal file
15
llms/hf_llm/models/base.py
Normal file
15
llms/hf_llm/models/base.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
import inspect
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class BaseModelArgs:
|
||||||
|
@classmethod
|
||||||
|
def from_dict(cls, params):
|
||||||
|
return cls(
|
||||||
|
**{
|
||||||
|
k: v
|
||||||
|
for k, v in params.items()
|
||||||
|
if k in inspect.signature(cls).parameters
|
||||||
|
}
|
||||||
|
)
|
202
llms/hf_llm/models/llama.py
Normal file
202
llms/hf_llm/models/llama.py
Normal file
@ -0,0 +1,202 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Dict, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
|
||||||
|
from .base import BaseModelArgs
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs(BaseModelArgs):
|
||||||
|
hidden_size: int
|
||||||
|
num_hidden_layers: int
|
||||||
|
intermediate_size: int
|
||||||
|
num_attention_heads: int
|
||||||
|
rms_norm_eps: float
|
||||||
|
vocab_size: int
|
||||||
|
num_key_value_heads: int = None
|
||||||
|
rope_theta: float = 10000
|
||||||
|
rope_traditional: bool = False
|
||||||
|
model_type: str = None
|
||||||
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.num_key_value_heads is None:
|
||||||
|
self.num_key_value_heads = self.num_attention_heads
|
||||||
|
|
||||||
|
if self.rope_scaling:
|
||||||
|
required_keys = {"factor", "type"}
|
||||||
|
if not all(key in self.rope_scaling for key in required_keys):
|
||||||
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||||
|
|
||||||
|
if self.rope_scaling["type"] != "linear":
|
||||||
|
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||||
|
|
||||||
|
|
||||||
|
class RMSNorm(nn.Module):
|
||||||
|
def __init__(self, dims: int, eps: float = 1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.weight = mx.ones((dims,))
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
def _norm(self, x):
|
||||||
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||||
|
return self.weight * output
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
dim = args.hidden_size
|
||||||
|
self.n_heads = n_heads = args.num_attention_heads
|
||||||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||||
|
|
||||||
|
self.repeats = n_heads // n_kv_heads
|
||||||
|
|
||||||
|
head_dim = args.hidden_size // n_heads
|
||||||
|
self.scale = head_dim**-0.5
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
||||||
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||||
|
|
||||||
|
rope_scale = (
|
||||||
|
1 / args.rope_scaling["factor"]
|
||||||
|
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||||
|
else 1
|
||||||
|
)
|
||||||
|
self.rope = nn.RoPE(
|
||||||
|
head_dim,
|
||||||
|
traditional=args.rope_traditional,
|
||||||
|
base=args.rope_theta,
|
||||||
|
scale=rope_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
B, L, D = x.shape
|
||||||
|
|
||||||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
|
|
||||||
|
# Prepare the queries, keys and values for the attention computation
|
||||||
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
def repeat(a):
|
||||||
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||||
|
return a.reshape([B, self.n_heads, L, -1])
|
||||||
|
|
||||||
|
if self.repeats > 1:
|
||||||
|
keys, values = map(repeat, (keys, values))
|
||||||
|
|
||||||
|
if cache is not None:
|
||||||
|
key_cache, value_cache = cache
|
||||||
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||||
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||||
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||||
|
values = mx.concatenate([value_cache, values], axis=2)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
|
||||||
|
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||||
|
if mask is not None:
|
||||||
|
scores += mask
|
||||||
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||||
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
return self.o_proj(output), (keys, values)
|
||||||
|
|
||||||
|
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, dim, hidden_dim):
|
||||||
|
super().__init__()
|
||||||
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||||
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
||||||
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||||
|
|
||||||
|
def __call__(self, x) -> mx.array:
|
||||||
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.num_attention_heads = args.num_attention_heads
|
||||||
|
self.hidden_size = args.hidden_size
|
||||||
|
self.self_attn = Attention(args)
|
||||||
|
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
||||||
|
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||||
|
h = x + r
|
||||||
|
r = self.mlp(self.post_attention_layernorm(h))
|
||||||
|
out = h + r
|
||||||
|
return out, cache
|
||||||
|
|
||||||
|
|
||||||
|
class LlamaModel(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
self.num_hidden_layers = args.num_hidden_layers
|
||||||
|
assert self.vocab_size > 0
|
||||||
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
|
self.layers = [
|
||||||
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||||
|
]
|
||||||
|
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
):
|
||||||
|
h = self.embed_tokens(inputs)
|
||||||
|
|
||||||
|
mask = None
|
||||||
|
if h.shape[1] > 1:
|
||||||
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||||
|
mask = mask.astype(h.dtype)
|
||||||
|
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
|
for e, layer in enumerate(self.layers):
|
||||||
|
h, cache[e] = layer(h, mask, cache[e])
|
||||||
|
|
||||||
|
return self.norm(h), cache
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.model = LlamaModel(args)
|
||||||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
):
|
||||||
|
out, cache = self.model(inputs, cache)
|
||||||
|
return self.lm_head(out), cache
|
138
llms/hf_llm/models/phi2.py
Normal file
138
llms/hf_llm/models/phi2.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import math
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
|
||||||
|
from .base import BaseModelArgs
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs(BaseModelArgs):
|
||||||
|
n_positions: int = 2048
|
||||||
|
vocab_size: int = 51200
|
||||||
|
n_embd: int = 2560
|
||||||
|
n_head: int = 32
|
||||||
|
n_layer: int = 32
|
||||||
|
rotary_dim: int = 32
|
||||||
|
|
||||||
|
|
||||||
|
class LayerNorm(nn.LayerNorm):
|
||||||
|
def __call__(self, x: mx.array) -> mx.array:
|
||||||
|
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||||
|
|
||||||
|
|
||||||
|
class RoPEAttention(nn.Module):
|
||||||
|
def __init__(self, dims: int, n_head: int, rotary_dim: int):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.n_head = n_head
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(dims, dims)
|
||||||
|
self.k_proj = nn.Linear(dims, dims)
|
||||||
|
self.v_proj = nn.Linear(dims, dims)
|
||||||
|
self.dense = nn.Linear(dims, dims)
|
||||||
|
|
||||||
|
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
||||||
|
|
||||||
|
def __call__(self, x, mask=None, cache=None):
|
||||||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
|
|
||||||
|
# Extract some shapes
|
||||||
|
n_head = self.n_head
|
||||||
|
B, L, D = queries.shape
|
||||||
|
|
||||||
|
# Prepare the queries, keys and values for the attention computation
|
||||||
|
queries = queries.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, n_head, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
# Add RoPE to the queries and keys and combine them with the cache
|
||||||
|
if cache is not None:
|
||||||
|
key_cache, value_cache = cache
|
||||||
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||||
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||||
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||||
|
values = mx.concatenate([value_cache, values], axis=2)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
|
||||||
|
queries = queries.astype(mx.float32)
|
||||||
|
keys = keys.astype(mx.float32)
|
||||||
|
|
||||||
|
# Finally perform the attention computation
|
||||||
|
scale = math.sqrt(1 / queries.shape[-1])
|
||||||
|
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||||
|
if mask is not None:
|
||||||
|
scores = scores + mask
|
||||||
|
|
||||||
|
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
||||||
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
|
||||||
|
return self.dense(values_hat), (keys, values)
|
||||||
|
|
||||||
|
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, dim, hidden_dim):
|
||||||
|
super().__init__()
|
||||||
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
||||||
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
||||||
|
self.act = nn.GELU(approx="precise")
|
||||||
|
|
||||||
|
def __call__(self, x) -> mx.array:
|
||||||
|
return self.fc2(self.act(self.fc1(x)))
|
||||||
|
|
||||||
|
|
||||||
|
class ParallelBlock(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
dims = config.n_embd
|
||||||
|
mlp_dims = dims * 4
|
||||||
|
self.self_attn = RoPEAttention(dims, config.n_head, config.rotary_dim)
|
||||||
|
self.input_layernorm = LayerNorm(dims)
|
||||||
|
self.mlp = MLP(dims, mlp_dims)
|
||||||
|
|
||||||
|
def __call__(self, x, mask, cache):
|
||||||
|
h = self.input_layernorm(x)
|
||||||
|
attn_h, cache = self.self_attn(h, mask, cache)
|
||||||
|
ff_h = self.mlp(h)
|
||||||
|
return attn_h + ff_h + x, cache
|
||||||
|
|
||||||
|
|
||||||
|
class Transformer(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
|
||||||
|
self.layers = [ParallelBlock(config) for i in range(config.n_layer)]
|
||||||
|
self.final_layernorm = LayerNorm(config.n_embd)
|
||||||
|
|
||||||
|
def __call__(self, x, mask, cache):
|
||||||
|
x = self.embed_tokens(x)
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
|
for e, layer in enumerate(self.layers):
|
||||||
|
x, cache[e] = layer(x, mask, cache[e])
|
||||||
|
return self.final_layernorm(x), cache
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.model = Transformer(config)
|
||||||
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: mx.array = None,
|
||||||
|
cache: mx.array = None,
|
||||||
|
) -> tuple[mx.array, mx.array]:
|
||||||
|
mask = None
|
||||||
|
if x.shape[1] > 1:
|
||||||
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||||
|
mask = mask.astype(x.dtype)
|
||||||
|
|
||||||
|
y, cache = self.model(x, mask, cache)
|
||||||
|
return self.lm_head(y), cache
|
141
llms/hf_llm/utils.py
Normal file
141
llms/hf_llm/utils.py
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
import glob
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Generator, Tuple
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
|
||||||
|
# Local imports
|
||||||
|
import models.llama as llama
|
||||||
|
import models.phi2 as phi2
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
from models.base import BaseModelArgs
|
||||||
|
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||||
|
|
||||||
|
# Constants
|
||||||
|
MODEL_MAPPING = {
|
||||||
|
"llama": llama,
|
||||||
|
"mistral": llama, # mistral is compatible with llama
|
||||||
|
"phi": phi2,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def _get_classes(config: dict):
|
||||||
|
"""
|
||||||
|
Retrieve the model and model args classes based on the configuration.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
config (dict): The model configuration.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple containing the Model class and the ModelArgs class.
|
||||||
|
"""
|
||||||
|
model_type = config["model_type"]
|
||||||
|
if model_type not in MODEL_MAPPING:
|
||||||
|
msg = f"Model type {model_type} not supported."
|
||||||
|
logging.error(msg)
|
||||||
|
raise ValueError(msg)
|
||||||
|
|
||||||
|
arch = MODEL_MAPPING[model_type]
|
||||||
|
return arch.Model, arch.ModelArgs
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_path(path_or_hf_repo: str) -> Path:
|
||||||
|
"""
|
||||||
|
Ensures the model is available locally. If the path does not exist locally,
|
||||||
|
it is downloaded from the Hugging Face Hub.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path_or_hf_repo (str): The local path or Hugging Face repository ID of the model.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Path: The path to the model.
|
||||||
|
"""
|
||||||
|
model_path = Path(path_or_hf_repo)
|
||||||
|
if not model_path.exists():
|
||||||
|
model_path = Path(
|
||||||
|
snapshot_download(
|
||||||
|
repo_id=path_or_hf_repo,
|
||||||
|
allow_patterns=["*.json", "*.safetensors", "*.py", "tokenizer.model"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return model_path
|
||||||
|
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
prompt: mx.array, model: nn.Module, temp: float = 0.0
|
||||||
|
) -> Generator[mx.array, None, None]:
|
||||||
|
"""
|
||||||
|
Generate text based on the given prompt and model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt (mx.array): The input prompt.
|
||||||
|
model (nn.Module): The model to use for generation.
|
||||||
|
temp (float): The temperature for sampling. If temp is 0, use max sampling.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
mx.array: The generated text.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def sample(logits: mx.array) -> mx.array:
|
||||||
|
return (
|
||||||
|
mx.argmax(logits, axis=-1)
|
||||||
|
if temp == 0
|
||||||
|
else mx.random.categorical(logits * (1 / temp))
|
||||||
|
)
|
||||||
|
|
||||||
|
y = prompt
|
||||||
|
cache = None
|
||||||
|
while True:
|
||||||
|
logits, cache = model(y[None], cache=cache)
|
||||||
|
logits = logits[:, -1, :]
|
||||||
|
y = sample(logits)
|
||||||
|
yield y
|
||||||
|
|
||||||
|
|
||||||
|
def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
|
||||||
|
"""
|
||||||
|
Load the model from a given path or a huggingface repository.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path_or_hf_repo (str): The path or the huggingface repository to load the model from.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[nn.Module, PreTrainedTokenizer]: The loaded model and tokenizer.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
FileNotFoundError: If config file or safetensors are not found.
|
||||||
|
ValueError: If model class or args class are not found.
|
||||||
|
"""
|
||||||
|
model_path = get_model_path(path_or_hf_repo)
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(model_path / "config.json", "r") as f:
|
||||||
|
config = json.load(f)
|
||||||
|
quantization = config.get("quantization", None)
|
||||||
|
except FileNotFoundError:
|
||||||
|
logging.error(f"Config file not found in {model_path}")
|
||||||
|
raise
|
||||||
|
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||||||
|
if not weight_files:
|
||||||
|
logging.error(f"No safetensors found in {model_path}")
|
||||||
|
raise FileNotFoundError(f"No safetensors found in {model_path}")
|
||||||
|
weights = {}
|
||||||
|
for wf in weight_files:
|
||||||
|
weights.update(mx.load(wf))
|
||||||
|
|
||||||
|
model_class, model_args_class = _get_classes(config=config)
|
||||||
|
|
||||||
|
model_args = model_args_class.from_dict(config)
|
||||||
|
model = model_class(model_args)
|
||||||
|
|
||||||
|
if quantization is not None:
|
||||||
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||||
|
|
||||||
|
model.load_weights(list(weights.items()))
|
||||||
|
|
||||||
|
mx.eval(model.parameters())
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
|
return model, tokenizer
|
@ -1,58 +0,0 @@
|
|||||||
# Phi-2
|
|
||||||
|
|
||||||
Phi-2 is a 2.7B parameter language model released by Microsoft with
|
|
||||||
performance that rivals much larger models.[^1] It was trained on a mixture of
|
|
||||||
GPT-4 outputs and clean web text.
|
|
||||||
|
|
||||||
Phi-2 efficiently runs on Apple silicon devices with 8GB of memory in 16-bit
|
|
||||||
precision.
|
|
||||||
|
|
||||||
### Setup
|
|
||||||
|
|
||||||
Install the dependencies:
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
### Run
|
|
||||||
```
|
|
||||||
python generate.py --model <model_path> --prompt "hello"
|
|
||||||
```
|
|
||||||
For example:
|
|
||||||
|
|
||||||
```
|
|
||||||
python generate.py --model microsoft/phi-2 --prompt "hello"
|
|
||||||
```
|
|
||||||
The `<model_path>` should be either a path to a local directory or a Hugging
|
|
||||||
Face repo with weights stored in `safetensors` format. If you use a repo from
|
|
||||||
the Hugging Face Hub, then the model will be downloaded and cached the first
|
|
||||||
time you run it.
|
|
||||||
|
|
||||||
Run `python generate.py --help` to see all the options.
|
|
||||||
|
|
||||||
### Convert new models
|
|
||||||
|
|
||||||
You can convert (change the data type or quantize) models using the
|
|
||||||
`convert.py` script. This script takes a Hugging Face repo as input and outputs
|
|
||||||
a model directory (which you can optionally also upload to Hugging Face).
|
|
||||||
|
|
||||||
For example, to make 4-bit quantized a model, run:
|
|
||||||
|
|
||||||
```
|
|
||||||
python convert.py --hf-path <hf_repo> -q
|
|
||||||
```
|
|
||||||
|
|
||||||
For more options run:
|
|
||||||
|
|
||||||
```
|
|
||||||
python convert.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
You can upload new models to the [Hugging Face MLX
|
|
||||||
Community](https://huggingface.co/mlx-community) by specifying `--upload-name``
|
|
||||||
to `convert.py`.
|
|
||||||
|
|
||||||
[^1]: For more details on the model see the [blog post](
|
|
||||||
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
|
|
||||||
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)
|
|
@ -1,172 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import copy
|
|
||||||
import glob
|
|
||||||
import json
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
import transformers
|
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from mlx.utils import tree_flatten
|
|
||||||
from phi2 import Model, ModelArgs
|
|
||||||
|
|
||||||
|
|
||||||
def fetch_from_hub(hf_path: str):
|
|
||||||
model_path = snapshot_download(
|
|
||||||
repo_id=hf_path,
|
|
||||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
|
||||||
)
|
|
||||||
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
|
||||||
if len(weight_files) == 0:
|
|
||||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
|
||||||
|
|
||||||
weights = {}
|
|
||||||
for wf in weight_files:
|
|
||||||
weights.update(mx.load(wf).items())
|
|
||||||
|
|
||||||
config = transformers.AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
|
|
||||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
||||||
hf_path,
|
|
||||||
)
|
|
||||||
return weights, config.to_dict(), tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
def quantize(weights, config, args):
|
|
||||||
quantized_config = copy.deepcopy(config)
|
|
||||||
|
|
||||||
# Load the model:
|
|
||||||
model = Model(ModelArgs.from_dict(config))
|
|
||||||
model.load_weights(list(weights.items()))
|
|
||||||
|
|
||||||
# Quantize the model:
|
|
||||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
|
||||||
|
|
||||||
# Update the config:
|
|
||||||
quantized_config["quantization"] = {
|
|
||||||
"group_size": args.q_group_size,
|
|
||||||
"bits": args.q_bits,
|
|
||||||
}
|
|
||||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
|
||||||
|
|
||||||
return quantized_weights, quantized_config
|
|
||||||
|
|
||||||
|
|
||||||
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
|
||||||
max_file_size_bytes = max_file_size_gibibyte << 30
|
|
||||||
shards = []
|
|
||||||
shard, shard_size = {}, 0
|
|
||||||
for k, v in weights.items():
|
|
||||||
estimated_size = v.size * v.dtype.size
|
|
||||||
if shard_size + estimated_size > max_file_size_bytes:
|
|
||||||
shards.append(shard)
|
|
||||||
shard, shard_size = {}, 0
|
|
||||||
shard[k] = v
|
|
||||||
shard_size += estimated_size
|
|
||||||
shards.append(shard)
|
|
||||||
return shards
|
|
||||||
|
|
||||||
|
|
||||||
def upload_to_hub(path: str, name: str, hf_path: str):
|
|
||||||
import os
|
|
||||||
|
|
||||||
from huggingface_hub import HfApi, ModelCard, logging
|
|
||||||
|
|
||||||
repo_id = f"mlx-community/{name}"
|
|
||||||
|
|
||||||
card = ModelCard.load(hf_path)
|
|
||||||
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
|
||||||
card.text = f"""
|
|
||||||
# {name}
|
|
||||||
This model was converted to MLX format from [`{hf_path}`]().
|
|
||||||
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
|
||||||
## Use with mlx
|
|
||||||
```bash
|
|
||||||
pip install mlx
|
|
||||||
git clone https://github.com/ml-explore/mlx-examples.git
|
|
||||||
cd mlx-examples/llms/hf_llm
|
|
||||||
python generate.py --model {repo_id} --prompt "My name is"
|
|
||||||
```
|
|
||||||
"""
|
|
||||||
card.save(os.path.join(path, "README.md"))
|
|
||||||
|
|
||||||
logging.set_verbosity_info()
|
|
||||||
|
|
||||||
api = HfApi()
|
|
||||||
api.create_repo(repo_id=repo_id, exist_ok=True)
|
|
||||||
api.upload_folder(
|
|
||||||
folder_path=path,
|
|
||||||
repo_id=repo_id,
|
|
||||||
repo_type="model",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Convert Hugging Face model to MLX format"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--hf-path",
|
|
||||||
type=str,
|
|
||||||
help="Path to the Hugging Face model.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--mlx-path",
|
|
||||||
type=str,
|
|
||||||
default="mlx_model",
|
|
||||||
help="Path to save the MLX model.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"-q",
|
|
||||||
"--quantize",
|
|
||||||
help="Generate a quantized model.",
|
|
||||||
action="store_true",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--q-group-size",
|
|
||||||
help="Group size for quantization.",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--q-bits",
|
|
||||||
help="Bits per weight for quantization.",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--dtype",
|
|
||||||
help="Type to save the parameters, ignored if -q is given.",
|
|
||||||
type=str,
|
|
||||||
choices=["float16", "bfloat16", "float32"],
|
|
||||||
default="float16",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--upload-name",
|
|
||||||
help="The name of model to upload to Hugging Face MLX Community",
|
|
||||||
type=str,
|
|
||||||
default=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
print("[INFO] Loading")
|
|
||||||
weights, config, tokenizer = fetch_from_hub(args.hf_path)
|
|
||||||
|
|
||||||
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
|
||||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
|
||||||
if args.quantize:
|
|
||||||
print("[INFO] Quantizing")
|
|
||||||
weights, config = quantize(weights, config, args)
|
|
||||||
|
|
||||||
mlx_path = Path(args.mlx_path)
|
|
||||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
|
||||||
shards = make_shards(weights)
|
|
||||||
for i, shard in enumerate(shards):
|
|
||||||
mx.save_safetensors(str(mlx_path / f"weights.{i:02d}.safetensors"), shard)
|
|
||||||
tokenizer.save_pretrained(mlx_path)
|
|
||||||
with open(mlx_path / "config.json", "w") as fid:
|
|
||||||
json.dump(config, fid, indent=4)
|
|
||||||
|
|
||||||
if args.upload_name is not None:
|
|
||||||
upload_to_hub(mlx_path, args.upload_name, args.hf_path)
|
|
@ -1,91 +0,0 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import time
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import phi2
|
|
||||||
import transformers
|
|
||||||
|
|
||||||
|
|
||||||
def generate(
|
|
||||||
model: phi2.Model,
|
|
||||||
tokenizer: transformers.AutoTokenizer,
|
|
||||||
prompt: str,
|
|
||||||
max_tokens: int,
|
|
||||||
temp: float = 0.0,
|
|
||||||
):
|
|
||||||
print("[INFO] Generating with Phi-2...", flush=True)
|
|
||||||
print(prompt, end="", flush=True)
|
|
||||||
prompt = tokenizer(
|
|
||||||
prompt,
|
|
||||||
return_tensors="np",
|
|
||||||
return_attention_mask=False,
|
|
||||||
)[
|
|
||||||
"input_ids"
|
|
||||||
][0]
|
|
||||||
prompt = mx.array(prompt)
|
|
||||||
|
|
||||||
tic = time.time()
|
|
||||||
tokens = []
|
|
||||||
skip = 0
|
|
||||||
for token, n in zip(
|
|
||||||
phi2.generate(prompt, model, temp),
|
|
||||||
range(max_tokens),
|
|
||||||
):
|
|
||||||
if token == tokenizer.eos_token_id:
|
|
||||||
break
|
|
||||||
|
|
||||||
if n == 0:
|
|
||||||
prompt_time = time.time() - tic
|
|
||||||
tic = time.time()
|
|
||||||
|
|
||||||
tokens.append(token.item())
|
|
||||||
# if (n + 1) % 10 == 0:
|
|
||||||
s = tokenizer.decode(tokens)
|
|
||||||
print(s[skip:], end="", flush=True)
|
|
||||||
skip = len(s)
|
|
||||||
print(tokenizer.decode(tokens)[skip:], flush=True)
|
|
||||||
gen_time = time.time() - tic
|
|
||||||
print("=" * 10)
|
|
||||||
if len(tokens) == 0:
|
|
||||||
print("No tokens generated for this prompt")
|
|
||||||
return
|
|
||||||
prompt_tps = prompt.size / prompt_time
|
|
||||||
gen_tps = (len(tokens) - 1) / gen_time
|
|
||||||
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
|
|
||||||
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(description="inference script")
|
|
||||||
parser.add_argument(
|
|
||||||
"--model",
|
|
||||||
type=str,
|
|
||||||
default="mlx_model",
|
|
||||||
help="The path to the local model directory or Hugging Face repo.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--prompt",
|
|
||||||
help="The message to be processed by the model",
|
|
||||||
default="Write a detailed analogy between mathematics and a lighthouse.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-tokens",
|
|
||||||
"-m",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="Maximum number of tokens to generate",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--temp",
|
|
||||||
help="The sampling temperature.",
|
|
||||||
type=float,
|
|
||||||
default=0.0,
|
|
||||||
)
|
|
||||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
mx.random.seed(args.seed)
|
|
||||||
model, tokenizer = phi2.load(args.model)
|
|
||||||
generate(model, tokenizer, args.prompt, args.max_tokens, args.temp)
|
|
@ -1,224 +0,0 @@
|
|||||||
import glob
|
|
||||||
import inspect
|
|
||||||
import json
|
|
||||||
import math
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import mlx.nn as nn
|
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from mlx.utils import tree_unflatten
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ModelArgs:
|
|
||||||
max_sequence_length: int = 2048
|
|
||||||
num_vocab: int = 51200
|
|
||||||
model_dim: int = 2560
|
|
||||||
num_heads: int = 32
|
|
||||||
num_layers: int = 32
|
|
||||||
rotary_dim: int = 32
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_dict(cls, params):
|
|
||||||
return cls(
|
|
||||||
**{
|
|
||||||
k: v
|
|
||||||
for k, v in params.items()
|
|
||||||
if k in inspect.signature(cls).parameters
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class LayerNorm(nn.LayerNorm):
|
|
||||||
def __call__(self, x: mx.array) -> mx.array:
|
|
||||||
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
|
||||||
|
|
||||||
|
|
||||||
class RoPEAttention(nn.Module):
|
|
||||||
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.num_heads = num_heads
|
|
||||||
|
|
||||||
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
|
||||||
self.Wqkv = nn.Linear(dims, 3 * dims)
|
|
||||||
self.out_proj = nn.Linear(dims, dims)
|
|
||||||
|
|
||||||
def __call__(self, x, mask=None, cache=None):
|
|
||||||
qkv = self.Wqkv(x)
|
|
||||||
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
|
||||||
|
|
||||||
# Extract some shapes
|
|
||||||
num_heads = self.num_heads
|
|
||||||
B, L, D = queries.shape
|
|
||||||
|
|
||||||
# Prepare the queries, keys and values for the attention computation
|
|
||||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
||||||
|
|
||||||
# Add RoPE to the queries and keys and combine them with the cache
|
|
||||||
if cache is not None:
|
|
||||||
key_cache, value_cache = cache
|
|
||||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
||||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
||||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
||||||
values = mx.concatenate([value_cache, values], axis=2)
|
|
||||||
else:
|
|
||||||
queries = self.rope(queries)
|
|
||||||
keys = self.rope(keys)
|
|
||||||
|
|
||||||
queries = queries.astype(mx.float32)
|
|
||||||
keys = keys.astype(mx.float32)
|
|
||||||
|
|
||||||
# Finally perform the attention computation
|
|
||||||
scale = math.sqrt(1 / queries.shape[-1])
|
|
||||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
|
||||||
if mask is not None:
|
|
||||||
scores = scores + mask
|
|
||||||
|
|
||||||
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
|
||||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
||||||
|
|
||||||
return self.out_proj(values_hat), (keys, values)
|
|
||||||
|
|
||||||
|
|
||||||
class MLP(nn.Module):
|
|
||||||
def __init__(self, dim, hidden_dim):
|
|
||||||
super().__init__()
|
|
||||||
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
||||||
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
||||||
self.act = nn.GELU(approx="precise")
|
|
||||||
|
|
||||||
def __call__(self, x) -> mx.array:
|
|
||||||
return self.fc2(self.act(self.fc1(x)))
|
|
||||||
|
|
||||||
|
|
||||||
class ParallelBlock(nn.Module):
|
|
||||||
def __init__(self, config: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
dims = config.model_dim
|
|
||||||
mlp_dims = dims * 4
|
|
||||||
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
|
||||||
self.ln = LayerNorm(dims)
|
|
||||||
self.mlp = MLP(dims, mlp_dims)
|
|
||||||
|
|
||||||
def __call__(self, x, mask, cache):
|
|
||||||
h = self.ln(x)
|
|
||||||
attn_h, cache = self.mixer(h, mask, cache)
|
|
||||||
ff_h = self.mlp(h)
|
|
||||||
return attn_h + ff_h + x, cache
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerDecoder(nn.Module):
|
|
||||||
def __init__(self, config: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.embd = Embd(config)
|
|
||||||
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
|
||||||
|
|
||||||
def __call__(self, x, mask, cache):
|
|
||||||
x = self.embd(x)
|
|
||||||
if cache is None:
|
|
||||||
cache = [None] * len(self.h)
|
|
||||||
|
|
||||||
for e, layer in enumerate(self.h):
|
|
||||||
x, cache[e] = layer(x, mask, cache[e])
|
|
||||||
return x, cache
|
|
||||||
|
|
||||||
|
|
||||||
class Embd(nn.Module):
|
|
||||||
def __init__(self, config: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
|
||||||
|
|
||||||
def __call__(self, x):
|
|
||||||
return self.wte(x)
|
|
||||||
|
|
||||||
|
|
||||||
class OutputHead(nn.Module):
|
|
||||||
def __init__(self, config: ModelArgs) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.ln = LayerNorm(config.model_dim)
|
|
||||||
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
|
||||||
|
|
||||||
def __call__(self, inputs):
|
|
||||||
return self.linear(self.ln(inputs))
|
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
|
||||||
def __init__(self, config: ModelArgs):
|
|
||||||
super().__init__()
|
|
||||||
self.transformer = TransformerDecoder(config)
|
|
||||||
self.lm_head = OutputHead(config)
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
x: mx.array,
|
|
||||||
mask: mx.array = None,
|
|
||||||
cache: mx.array = None,
|
|
||||||
) -> tuple[mx.array, mx.array]:
|
|
||||||
mask = None
|
|
||||||
if x.shape[1] > 1:
|
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
|
||||||
mask = mask.astype(x.dtype)
|
|
||||||
|
|
||||||
y, cache = self.transformer(x, mask, cache)
|
|
||||||
return self.lm_head(y), cache
|
|
||||||
|
|
||||||
|
|
||||||
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
|
||||||
def sample(logits):
|
|
||||||
if temp == 0:
|
|
||||||
return mx.argmax(logits, axis=-1)
|
|
||||||
else:
|
|
||||||
return mx.random.categorical(logits * (1 / temp))
|
|
||||||
|
|
||||||
y = prompt
|
|
||||||
cache = None
|
|
||||||
while True:
|
|
||||||
logits, cache = model(y[None], cache=cache)
|
|
||||||
logits = logits[:, -1, :]
|
|
||||||
y = sample(logits)
|
|
||||||
yield y
|
|
||||||
|
|
||||||
|
|
||||||
def load(path_or_hf_repo: str):
|
|
||||||
# If the path exists, it will try to load model form it
|
|
||||||
# otherwise download and cache from the hf_repo and cache
|
|
||||||
model_path = Path(path_or_hf_repo)
|
|
||||||
if not model_path.exists():
|
|
||||||
model_path = Path(
|
|
||||||
snapshot_download(
|
|
||||||
repo_id=path_or_hf_repo,
|
|
||||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
with open(model_path / "config.json", "r") as f:
|
|
||||||
config = json.loads(f.read())
|
|
||||||
quantization = config.get("quantization", None)
|
|
||||||
model_args = ModelArgs.from_dict(config)
|
|
||||||
|
|
||||||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
|
||||||
if len(weight_files) == 0:
|
|
||||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
|
||||||
|
|
||||||
weights = {}
|
|
||||||
for wf in weight_files:
|
|
||||||
weights.update(mx.load(wf).items())
|
|
||||||
|
|
||||||
model = Model(model_args)
|
|
||||||
if quantization is not None:
|
|
||||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
|
||||||
|
|
||||||
model.load_weights(list(weights.items()))
|
|
||||||
|
|
||||||
mx.eval(model.parameters())
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
|
||||||
model_path,
|
|
||||||
)
|
|
||||||
return model, tokenizer
|
|
@ -1,5 +0,0 @@
|
|||||||
einops
|
|
||||||
mlx
|
|
||||||
numpy
|
|
||||||
transformers>=4.35
|
|
||||||
torch
|
|
Loading…
Reference in New Issue
Block a user