This commit is contained in:
Goekdeniz-Guelmez 2025-02-05 09:48:00 +01:00
parent d84ad0cf86
commit a33cad84b4
2 changed files with 25 additions and 66 deletions

View File

@ -206,15 +206,15 @@ def build_parser():
)
parser.add_argument(
"--use-chat-template",
type=bool,
action="store_true",
help="If the model is a Chat model, use the Chat template.",
default=False,
default=None,
)
parser.add_argument(
"--use-prompt",
type=bool,
help="Rather to use the prompt from teh R1 paper.",
default=False,
action="store_true",
help="Rather to use the prompt from the R1 paper.",
default=None,
)
return parser

View File

@ -12,7 +12,6 @@ from mlx.utils import tree_flatten
from .trainer import grad_checkpoint, TrainingArgs, TrainingCallback, average_gradients, iterate_batches
@dataclass
class GRPOTrainingArgs(TrainingArgs):
group_size: int = field(
@ -35,7 +34,6 @@ class GRPOTrainingArgs(TrainingArgs):
}
)
def r1_extract_xml_answer(text: str) -> str:
"""Extracts the answer from an XML formatted text string."""
try:
@ -46,62 +44,30 @@ def r1_extract_xml_answer(text: str) -> str:
print("[extract_xml_answer] Failed to extract answer from: ", text)
return ""
def r1_accuracy_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
"""Calculates reward based on accuracy of extracted answers.
Args:
prompts: List of input prompts
completions: List of completion strings
answer: Expected answer or list of answers
**kwargs: Additional arguments
Returns:
list[float]: Reward values for each completion
"""
extracted_responses = [r1_extract_xml_answer(r) for r in completions]
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
def r1_int_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
"""Rewards numerical responses.
Args:
prompts: List of input prompts
completions: List of completion strings
answer: Expected answer or list of answers
**kwargs: Additional arguments
Returns:
list[float]: Reward values for each completion
"""
extracted_responses = [r1_extract_xml_answer(r) for r in completions]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
def r1_accuracy_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
extracted_responses = [r1_extract_xml_answer(r) for r in completions]
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
def r1_soft_format_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
"""Rewards completions with flexible XML format."""
pattern = r"<think>.*?</think>\s*<answer>.*?</answer>"
matches = [re.match(pattern, r) for r in completions]
return [0.5 if match else 0.0 for match in matches]
def r1_int_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
extracted_responses = [r1_extract_xml_answer(r) for r in completions]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
def r1_strict_format_reward_func(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
"""Rewards completions with strict XML format.
Args:
prompts: List of input prompts
completions: List of completion strings
answer: Expected answer or list of answers
**kwargs: Additional arguments
Returns:
list[float]: Reward values for each completion
"""
pattern = r"^<think>\n.*?\n</think>\n<answer>\n.*?\n</answer>\n$"
matches = [re.match(pattern, r) for r in completions]
return [0.5 if match else 0.0 for match in matches]
def r1_count_xml(prompts: list, completions: list, answer: list, **kwargs) -> list[float]:
"""Calculates score based on XML formatting.
Args:
prompts: List of input prompts (unused)
completions: List of completion strings to evaluate
answer: Expected answer or list of answers (unused)
**kwargs: Additional arguments
Returns:
list[float]: List of scores based on XML tag presence and formatting
"""
scores = []
for text in completions:
count = 0.0
@ -116,10 +82,9 @@ def r1_count_xml(prompts: list, completions: list, answer: list, **kwargs) -> li
count += 0.125
count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
scores.append(count)
return scores
def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
def generate_grpo(model, prompt, max_tokens, tokenizer, temperature):
if len(prompt.shape) == 1:
prompt = prompt[None, :]
if prompt.shape[1] == 0:
@ -172,30 +137,24 @@ def generate_grpo(model, prompt, max_tokens, tokenizer, temperature=1.0):
def get_per_token_logps(model, inputs, lengths):
logits = model(inputs).astype(mx.float16) # [batch_size, seq_len, vocab_size]
# Remove last position as it corresponds to the next token prediction
logits = logits[:, :-1, :] # [batch_size, seq_len-1, vocab_size]
targets = inputs[:, 1:] # Shift inputs to get targets
logits = model(inputs).astype(mx.float16)
logits = logits[:, :-1, :]
targets = inputs[:, 1:]
# Process sequences individually to save memory
per_token_logps = []
for i in range(logits.shape[0]):
# Get sequence length for this example
seq_len = int(lengths[i]) - 1 # -1 because we removed last position
seq_len = int(lengths[i]) - 1
# Get logits and targets for this sequence
seq_logits = logits[i, :seq_len] # [seq_len, vocab_size]
seq_targets = targets[i, :seq_len] # [seq_len]
seq_logits = logits[i, :seq_len]
seq_targets = targets[i, :seq_len]
# Compute log probabilities
log_probs = nn.log_softmax(seq_logits, axis=-1) # [seq_len, vocab_size]
log_probs = nn.log_softmax(seq_logits, axis=-1)
# Gather log probs for actual tokens
token_log_probs = mx.take_along_axis(
log_probs,
seq_targets.reshape(seq_len, 1),
axis=-1
).squeeze(-1) # [seq_len]
).squeeze(-1)
per_token_logps.append(token_log_probs)
mx.eval(logits)
@ -316,7 +275,7 @@ def grpo_loss(
advantages = (rewards - mean_rewards) / (std_rewards + epsilon)
# Compute KL divergence using Schulman's approximator
kl_div = mx.exp(ref_token_log_probs - token_log_probs) - (ref_token_log_probs - token_log_probs) - 1
kl_div = (mx.exp(token_log_probs - ref_token_log_probs) - 1) - (token_log_probs - ref_token_log_probs)
# Create mask for valid tokens
length_mask = mx.arange(inputs.shape[1] - 1)[None, :] < (lengths[:, None] - 1)
@ -325,10 +284,10 @@ def grpo_loss(
policy_ratio = mx.exp(token_log_probs - mx.stop_gradient(token_log_probs))
# Compute per-token loss following GRPO formula
per_token_loss = -(policy_ratio * advantages.reshape(-1, 1) - beta * kl_div)
per_token_loss = -(policy_ratio * advantages.reshape(-1, 1) - beta * kl_div) * length_mask
# Average over tokens and sequences
sequence_sums = (per_token_loss * length_mask).sum(axis=1)
sequence_sums = per_token_loss.sum(axis=1)
sequence_lengths = length_mask.sum(axis=1)
loss = (sequence_sums / sequence_lengths).mean()