mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00
Merge pull request #107 from ml-explore/hf_mixtral
Use official HF for mixtral
This commit is contained in:
commit
a3ecda22fe
@ -315,7 +315,7 @@ def load_model(model_path):
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
unused = ["multiple_of", "ffn_dim_multiplier", 'rope_theta']
|
||||
unused = ["multiple_of", "ffn_dim_multiplier", "rope_theta"]
|
||||
for k in unused:
|
||||
if k in config:
|
||||
config.pop(k)
|
||||
|
@ -2,6 +2,8 @@
|
||||
|
||||
Run the Mixtral[^mixtral] 8x7B mixture-of-experts (MoE) model in MLX on Apple silicon.
|
||||
|
||||
This example also supports the instruction fine-tuned Mixtral model.[^instruct]
|
||||
|
||||
Note, for 16-bit precision this model needs a machine with substantial RAM (~100GB) to run.
|
||||
|
||||
### Setup
|
||||
@ -16,37 +18,56 @@ brew install git-lfs
|
||||
|
||||
Download the models from Hugging Face:
|
||||
|
||||
For the base model use:
|
||||
|
||||
```
|
||||
git-lfs clone https://huggingface.co/someone13574/mixtral-8x7b-32kseqlen
|
||||
export MIXTRAL_MODEL=Mixtral-8x7B-v0.1
|
||||
```
|
||||
|
||||
After that's done, combine the files:
|
||||
For the instruction fine-tuned model use:
|
||||
|
||||
```
|
||||
cd mixtral-8x7b-32kseqlen/
|
||||
cat consolidated.00.pth-split0 consolidated.00.pth-split1 consolidated.00.pth-split2 consolidated.00.pth-split3 consolidated.00.pth-split4 consolidated.00.pth-split5 consolidated.00.pth-split6 consolidated.00.pth-split7 consolidated.00.pth-split8 consolidated.00.pth-split9 consolidated.00.pth-split10 > consolidated.00.pth
|
||||
export MIXTRAL_MODEL=Mixtral-8x7B-Instruct-v0.1
|
||||
```
|
||||
|
||||
Then run:
|
||||
|
||||
```
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/mistralai/${MIXTRAL_MODEL}/
|
||||
cd $MIXTRAL_MODEL/ && \
|
||||
git lfs pull --include "consolidated.*.pt" && \
|
||||
git lfs pull --include "tokenizer.model"
|
||||
```
|
||||
|
||||
Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
|
||||
MLX can read them:
|
||||
|
||||
```
|
||||
python convert.py --model_path mixtral-8x7b-32kseqlen/
|
||||
python convert.py --model_path $MIXTRAL_MODEL/
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
|
||||
After that's done, if you want to clean some stuff up:
|
||||
|
||||
```
|
||||
rm mixtral-8x7b-32kseqlen/*.pth*
|
||||
```
|
||||
|
||||
### Generate
|
||||
|
||||
As easy as:
|
||||
|
||||
```
|
||||
python mixtral.py --model_path mixtral-8x7b-32kseqlen/
|
||||
python mixtral.py --model_path $MIXTRAL_MODEL/
|
||||
```
|
||||
|
||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
For more options including how to prompt the model, run:
|
||||
|
||||
```
|
||||
python mixtral.py --help
|
||||
```
|
||||
|
||||
For the Instruction model, make sure to follow the prompt format:
|
||||
|
||||
```
|
||||
[INST] Instruction prompt [/INST]
|
||||
```
|
||||
|
||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) and the [Hugging Face blog post](https://huggingface.co/blog/mixtral) for more details.
|
||||
[^instruc]: Refer to the [Hugging Face repo](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for more
|
||||
details
|
||||
|
@ -1,23 +1,55 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import json
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import torch
|
||||
|
||||
|
||||
def convert(k, v, config):
|
||||
v = v.to(torch.float16).numpy()
|
||||
if "block_sparse_moe" not in k:
|
||||
return [(k, v)]
|
||||
if "gate" in k:
|
||||
return [(k.replace("block_sparse_moe", "feed_forward"), v)]
|
||||
|
||||
# From: layers.N.block_sparse_moe.w
|
||||
# To: layers.N.experts.M.w
|
||||
num_experts = args["moe"]["num_experts"]
|
||||
key_path = k.split(".")
|
||||
v = np.split(v, num_experts, axis=0)
|
||||
if key_path[-1] == "w2":
|
||||
v = [u.T for u in v]
|
||||
|
||||
w_name = key_path.pop()
|
||||
key_path[-1] = "feed_forward.experts"
|
||||
return [
|
||||
(".".join(key_path + [str(e), w_name, "weight"]), u) for e, u in enumerate(v)
|
||||
]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Mixtral weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
default="mixtral-8x7b-32kseqlen/",
|
||||
default="Mixtral-8x7B-v0.1/",
|
||||
help="The path to the Mixtral model. The MLX model weights will also be saved there.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
model_path = Path(args.model_path)
|
||||
state = torch.load(str(model_path / "consolidated.00.pth"))
|
||||
np.savez(
|
||||
str(model_path / "weights.npz"),
|
||||
**{k: v.to(torch.float16).numpy() for k, v in state.items()},
|
||||
)
|
||||
|
||||
with open("params.json") as fid:
|
||||
args = json.load(fid)
|
||||
|
||||
torch_files = glob.glob(str(model_path / "consolidated.*.pt"))
|
||||
torch_files = sorted(torch_files, key=lambda tf: int(tf.split(".")[-2]))
|
||||
for e, tf in enumerate(torch_files):
|
||||
print(f"[INFO] Converting file {e + 1}/{len(torch_files)}")
|
||||
state = torch.load(tf)
|
||||
new_state = {}
|
||||
for k, v in state.items():
|
||||
new_state.update(convert(k, v, args))
|
||||
np.savez(str(model_path / f"weights.{e}.npz"), **new_state)
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
import argparse
|
||||
from dataclasses import dataclass
|
||||
import glob
|
||||
import json
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
@ -222,10 +223,13 @@ class Tokenizer:
|
||||
def load_model(folder: str, dtype=mx.float16):
|
||||
model_path = Path(folder)
|
||||
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
||||
with open(model_path / "params.json", "r") as f:
|
||||
with open("params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
model_args = ModelArgs(**config)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
weight_files = glob.glob(str(model_path / "weights.*.npz"))
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
weights = tree_map(lambda p: p.astype(dtype), weights)
|
||||
model = Mixtral(model_args)
|
||||
@ -255,7 +259,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
default="mixtral-8x7b-32kseqlen",
|
||||
default="Mixtral-8x7B-v0.1",
|
||||
help="The path to the model weights, tokenizer, and config",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
1
mixtral/params.json
Normal file
1
mixtral/params.json
Normal file
@ -0,0 +1 @@
|
||||
{"dim": 4096, "n_layers": 32, "head_dim": 128, "hidden_dim": 14336, "n_heads": 32, "n_kv_heads": 8, "norm_eps": 1e-05, "vocab_size": 32000, "moe": {"num_experts_per_tok": 2, "num_experts": 8}}
|
@ -1,6 +1,7 @@
|
||||
from transformers import AutoModelForCausalLM
|
||||
import numpy as np
|
||||
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
if "wte.weight" in key:
|
||||
key = "wte.weight"
|
||||
|
@ -65,7 +65,6 @@ class TestWhisper(unittest.TestCase):
|
||||
logits = mlx_model(mels, tokens)
|
||||
self.assertEqual(logits.dtype, mx.float16)
|
||||
|
||||
|
||||
def test_decode_lang(self):
|
||||
options = decoding.DecodingOptions(task="lang_id", fp16=False)
|
||||
result = decoding.decode(self.model, self.mels, options)
|
||||
|
@ -112,7 +112,7 @@ class DecodingOptions:
|
||||
max_initial_timestamp: Optional[float] = 1.0
|
||||
|
||||
# implementation details
|
||||
fp16: bool = True # use fp16 for most of the calculation
|
||||
fp16: bool = True # use fp16 for most of the calculation
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
|
@ -44,7 +44,7 @@ _ALIGNMENT_HEADS = {
|
||||
"large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj",
|
||||
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
|
||||
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
|
||||
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00"
|
||||
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
|
||||
}
|
||||
|
||||
|
||||
@ -166,7 +166,8 @@ def convert(model, rules=None):
|
||||
|
||||
|
||||
def torch_to_mlx(
|
||||
torch_model: torch_whisper.Whisper, dtype: mx.Dtype = mx.float16,
|
||||
torch_model: torch_whisper.Whisper,
|
||||
dtype: mx.Dtype = mx.float16,
|
||||
) -> whisper.Whisper:
|
||||
def convert_rblock(model, rules):
|
||||
children = dict(model.named_children())
|
||||
@ -194,6 +195,6 @@ def torch_to_mlx(
|
||||
def load_model(
|
||||
name: str,
|
||||
download_root: str = None,
|
||||
dtype : mx.Dtype = mx.float32,
|
||||
dtype: mx.Dtype = mx.float32,
|
||||
) -> whisper.Whisper:
|
||||
return torch_to_mlx(load_torch_model(name, download_root), dtype)
|
||||
|
@ -43,7 +43,7 @@ class ModelHolder:
|
||||
model_name = None
|
||||
|
||||
@classmethod
|
||||
def get_model(cls, model: str, dtype : mx.Dtype):
|
||||
def get_model(cls, model: str, dtype: mx.Dtype):
|
||||
if cls.model is None or model != cls.model_name:
|
||||
cls.model = load_model(model, dtype=dtype)
|
||||
cls.model_name = model
|
||||
|
@ -37,6 +37,7 @@ def sinusoids(length, channels, max_timescale=10000):
|
||||
scaled_time = mx.arange(length)[:, None] * inv_timescales[None, :]
|
||||
return mx.concatenate([mx.sin(scaled_time), mx.cos(scaled_time)], axis=1)
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||
@ -123,7 +124,13 @@ class ResidualAttentionBlock(nn.Module):
|
||||
|
||||
class AudioEncoder(nn.Module):
|
||||
def __init__(
|
||||
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, dtype: mx.Dtype = mx.float16,
|
||||
self,
|
||||
n_mels: int,
|
||||
n_ctx: int,
|
||||
n_state: int,
|
||||
n_head: int,
|
||||
n_layer: int,
|
||||
dtype: mx.Dtype = mx.float16,
|
||||
):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
||||
@ -148,7 +155,13 @@ class AudioEncoder(nn.Module):
|
||||
|
||||
class TextDecoder(nn.Module):
|
||||
def __init__(
|
||||
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, dtype: mx.Dtype = mx.float16,
|
||||
self,
|
||||
n_vocab: int,
|
||||
n_ctx: int,
|
||||
n_state: int,
|
||||
n_head: int,
|
||||
n_layer: int,
|
||||
dtype: mx.Dtype = mx.float16,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -160,7 +173,9 @@ class TextDecoder(nn.Module):
|
||||
for _ in range(n_layer)
|
||||
]
|
||||
self.ln = LayerNorm(n_state)
|
||||
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx).astype(dtype)
|
||||
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx).astype(
|
||||
dtype
|
||||
)
|
||||
|
||||
def __call__(self, x, xa, kv_cache=None):
|
||||
"""
|
||||
|
Loading…
Reference in New Issue
Block a user