mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
@@ -44,7 +44,9 @@ def convert(args):
|
||||
config = model.config.to_dict()
|
||||
|
||||
state_dict = model.state_dict()
|
||||
tokenizer = AutoTokenizer.from_pretrained(str(hf_path), trust_remote_code=True, use_fast=False)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
str(hf_path), trust_remote_code=True, use_fast=False
|
||||
)
|
||||
|
||||
# things to change
|
||||
# 1. there's no "model." in the weight names
|
||||
@@ -84,7 +86,9 @@ def convert(args):
|
||||
|
||||
weights = {k: v.numpy() for k, v in state_dict.items()}
|
||||
|
||||
config["rope_scaling_factor"] = config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
|
||||
config["rope_scaling_factor"] = (
|
||||
config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
|
||||
)
|
||||
keep_keys = set(
|
||||
[
|
||||
"vocab_size",
|
||||
@@ -96,7 +100,7 @@ def convert(args):
|
||||
"rms_norm_eps",
|
||||
"intermediate_size",
|
||||
"rope_scaling_factor",
|
||||
"rope_theta"
|
||||
"rope_theta",
|
||||
]
|
||||
)
|
||||
for k in list(config.keys()):
|
||||
|
||||
@@ -285,7 +285,11 @@ if __name__ == "__main__":
|
||||
|
||||
model, tokenizer = load_model(args.model_path)
|
||||
|
||||
prompt = tokenizer(args.prompt, return_tensors="np", return_attention_mask=False,)[
|
||||
prompt = tokenizer(
|
||||
args.prompt,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)[
|
||||
"input_ids"
|
||||
][0]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user