mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
parent
1d09c4fecd
commit
a5d6d0436c
@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 22.10.0
|
||||
rev: 23.12.1
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/pycqa/isort
|
||||
|
@ -32,7 +32,6 @@ def forward_fn(gcn, x, adj, y, train_mask, weight_decay):
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
# Data loading
|
||||
x, y, adj = load_data(args)
|
||||
train_mask, val_mask, test_mask = train_val_test_mask()
|
||||
@ -55,7 +54,6 @@ def main(args):
|
||||
|
||||
# Training loop
|
||||
for epoch in range(args.epochs):
|
||||
|
||||
# Loss
|
||||
(loss, y_hat), grads = loss_and_grad_fn(
|
||||
gcn, x, adj, y, train_mask, args.weight_decay
|
||||
@ -96,7 +94,6 @@ def main(args):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--nodes_path", type=str, default="cora/cora.content")
|
||||
parser.add_argument("--edges_path", type=str, default="cora/cora.cites")
|
||||
|
@ -44,7 +44,9 @@ def convert(args):
|
||||
config = model.config.to_dict()
|
||||
|
||||
state_dict = model.state_dict()
|
||||
tokenizer = AutoTokenizer.from_pretrained(str(hf_path), trust_remote_code=True, use_fast=False)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
str(hf_path), trust_remote_code=True, use_fast=False
|
||||
)
|
||||
|
||||
# things to change
|
||||
# 1. there's no "model." in the weight names
|
||||
@ -84,7 +86,9 @@ def convert(args):
|
||||
|
||||
weights = {k: v.numpy() for k, v in state_dict.items()}
|
||||
|
||||
config["rope_scaling_factor"] = config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
|
||||
config["rope_scaling_factor"] = (
|
||||
config["rope_scaling"]["factor"] if config["rope_scaling"] is not None else 1.0
|
||||
)
|
||||
keep_keys = set(
|
||||
[
|
||||
"vocab_size",
|
||||
@ -96,7 +100,7 @@ def convert(args):
|
||||
"rms_norm_eps",
|
||||
"intermediate_size",
|
||||
"rope_scaling_factor",
|
||||
"rope_theta"
|
||||
"rope_theta",
|
||||
]
|
||||
)
|
||||
for k in list(config.keys()):
|
||||
|
@ -285,7 +285,11 @@ if __name__ == "__main__":
|
||||
|
||||
model, tokenizer = load_model(args.model_path)
|
||||
|
||||
prompt = tokenizer(args.prompt, return_tensors="np", return_attention_mask=False,)[
|
||||
prompt = tokenizer(
|
||||
args.prompt,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)[
|
||||
"input_ids"
|
||||
][0]
|
||||
|
||||
|
75
llms/hf_llm/README.md
Normal file
75
llms/hf_llm/README.md
Normal file
@ -0,0 +1,75 @@
|
||||
## Generate Text with MLX and :hugs: Hugging Face
|
||||
|
||||
This an example large language model text generation that can pull models from
|
||||
the Hugging Face Hub.
|
||||
|
||||
### Setup
|
||||
|
||||
Install the dependencies:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
```
|
||||
python generate.py --model <model_path> --prompt "hello"
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
python generate.py --model mistralai/Mistral-7B-v0.1 --prompt "hello"
|
||||
```
|
||||
|
||||
will download the Mistral 7B model and generate text using the given prompt.
|
||||
|
||||
The `<model_path>` should be either a path to a local directory or a Hugging
|
||||
Face repo with weights stored in `safetensors` format. If you use a repo from
|
||||
the Hugging Face Hub, then the model will be downloaded and cached the first
|
||||
time you run it. See the [Models](#models) section for a full list of supported models.
|
||||
|
||||
Run `python generate.py --help` to see all the options.
|
||||
|
||||
|
||||
### Models
|
||||
|
||||
The example supports Hugging Face format Mistral and Llama-style models. If the
|
||||
model you want to run is not supported, file an
|
||||
[issue](https://github.com/ml-explore/mlx-examples/issues/new) or better yet,
|
||||
submit a pull request.
|
||||
|
||||
Here are a few examples of Hugging Face models which work with this example:
|
||||
|
||||
- [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
||||
- [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T)
|
||||
|
||||
Most
|
||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending)
|
||||
and
|
||||
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending)
|
||||
style models should work out of the box.
|
||||
|
||||
### Convert new models
|
||||
|
||||
You can convert (change the data type or quantize) models using the
|
||||
`convert.py` script. This script takes a Hugging Face repo as input and outputs
|
||||
a model directory (which you can optionally also upload to Hugging Face).
|
||||
|
||||
For example, to make 4-bit quantized a model, run:
|
||||
|
||||
```
|
||||
python convert.py --hf-model <hf_repo> -q
|
||||
```
|
||||
|
||||
For more options run:
|
||||
|
||||
```
|
||||
python convert.py --help
|
||||
```
|
||||
|
||||
You can upload new models to the [Hugging Face MLX
|
||||
Community](https://huggingface.co/mlx-community) by specifying `--upload-name``
|
||||
to `convert.py`.
|
174
llms/hf_llm/convert.py
Normal file
174
llms/hf_llm/convert.py
Normal file
@ -0,0 +1,174 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import glob
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import transformers
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_flatten
|
||||
from models import Model, ModelArgs
|
||||
|
||||
|
||||
def fetch_from_hub(hf_path: str):
|
||||
model_path = snapshot_download(
|
||||
repo_id=hf_path,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
config = transformers.AutoConfig.from_pretrained(hf_path)
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
||||
hf_path,
|
||||
)
|
||||
return weights, config.to_dict(), tokenizer
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
model = Model(ModelArgs.from_dict(config))
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
||||
max_file_size_bytes = max_file_size_gibibyte << 30
|
||||
shards = []
|
||||
shard, shard_size = {}, 0
|
||||
for k, v in weights.items():
|
||||
estimated_size = v.size * v.dtype.size
|
||||
if shard_size + estimated_size > max_file_size_bytes:
|
||||
shards.append(shard)
|
||||
shard, shard_size = {}, 0
|
||||
shard[k] = v
|
||||
shard_size += estimated_size
|
||||
shards.append(shard)
|
||||
return shards
|
||||
|
||||
|
||||
def upload_to_hub(path: str, name: str):
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi, ModelCard, logging
|
||||
|
||||
repo_id = f"mlx-community/{name}"
|
||||
|
||||
card = ModelCard.load(hf_path)
|
||||
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
||||
card.text = f"""
|
||||
# {name}
|
||||
This model was converted to MLX format from [`{hf_path}`]().
|
||||
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
||||
## Use with mlx
|
||||
```bash
|
||||
pip install mlx
|
||||
git clone https://github.com/ml-explore/mlx-examples.git
|
||||
cd mlx-examples/llms/hf_llm
|
||||
python generate.py --model {repo_id} --prompt "My name is"
|
||||
```
|
||||
"""
|
||||
card.save(os.path.join(path, "README.md"))
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
api = HfApi()
|
||||
api.create_repo(repo_id=repo_id, exist_ok=True)
|
||||
api.upload_folder(
|
||||
folder_path=path,
|
||||
repo_id=repo_id,
|
||||
repo_type="model",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert Hugging Face model to MLX format"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-path",
|
||||
type=str,
|
||||
help="Path to the Hugging Face model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="Path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q-group-size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q-bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
help="Type to save the parameters, ignored if -q is given.",
|
||||
type=str,
|
||||
choices=["float16", "bfloat16", "float32"],
|
||||
default="float16",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--upload-name",
|
||||
help="The name of model to upload to Hugging Face MLX Community",
|
||||
type=str,
|
||||
default=None,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("[INFO] Loading")
|
||||
weights, config, tokenizer = fetch_from_hub(args.hf_path)
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
if not args.quantize:
|
||||
dtype = getattr(mx, args.dtype)
|
||||
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
||||
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
shards = make_shards(weights)
|
||||
for i, shard in enumerate(shards):
|
||||
mx.save_safetensors(str(mlx_path / f"weights.{i:02d}.safetensors"), shard)
|
||||
tokenizer.save_pretrained(mlx_path)
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
json.dump(config, fid, indent=4)
|
||||
|
||||
if args.upload_name is not None:
|
||||
upload_to_hub(mlx_path, args.upload_name)
|
86
llms/hf_llm/generate.py
Normal file
86
llms/hf_llm/generate.py
Normal file
@ -0,0 +1,86 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import models
|
||||
import transformers
|
||||
|
||||
|
||||
def generate(
|
||||
model: models.Model,
|
||||
tokenizer: transformers.AutoTokenizer,
|
||||
prompt: str,
|
||||
max_tokens: int,
|
||||
temp: float = 0.0,
|
||||
):
|
||||
prompt = tokenizer(
|
||||
args.prompt,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)[
|
||||
"input_ids"
|
||||
][0]
|
||||
prompt = mx.array(prompt)
|
||||
|
||||
tic = time.time()
|
||||
tokens = []
|
||||
skip = 0
|
||||
for token, n in zip(
|
||||
models.generate(prompt, model, args.temp),
|
||||
range(args.max_tokens),
|
||||
):
|
||||
if token == tokenizer.eos_token_id:
|
||||
break
|
||||
|
||||
if n == 0:
|
||||
prompt_time = time.time() - tic
|
||||
tic = time.time()
|
||||
|
||||
tokens.append(token.item())
|
||||
# if (n + 1) % 10 == 0:
|
||||
s = tokenizer.decode(tokens)
|
||||
print(s[skip:], end="", flush=True)
|
||||
skip = len(s)
|
||||
print(tokenizer.decode(tokens)[skip:], flush=True)
|
||||
gen_time = time.time() - tic
|
||||
print("=" * 10)
|
||||
prompt_tps = prompt.size / prompt_time
|
||||
gen_tps = (len(tokens) - 1) / gen_time
|
||||
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
|
||||
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="inference script")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to the local model directory or Hugging Face repo.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="The message to be processed by the model",
|
||||
default="In the beginning the Universe was created.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Maximum number of tokens to generate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp",
|
||||
help="The sampling temperature.",
|
||||
type=float,
|
||||
default=0.0,
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
|
||||
args = parser.parse_args()
|
||||
mx.random.seed(args.seed)
|
||||
model, tokenizer = models.load(args.model)
|
||||
generate(model, tokenizer, args.prompt, args.max_tokens, args.temp)
|
255
llms/hf_llm/models.py
Normal file
255
llms/hf_llm/models.py
Normal file
@ -0,0 +1,255 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import glob
|
||||
import inspect
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_unflatten
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
hidden_size: int
|
||||
num_hidden_layers: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int = None
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
model_type: str = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
self.num_key_value_heads = self.num_attention_heads
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, params):
|
||||
return cls(
|
||||
**{
|
||||
k: v
|
||||
for k, v in params.items()
|
||||
if k in inspect.signature(cls).parameters
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
def _norm(self, x):
|
||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||
|
||||
def __call__(self, x):
|
||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||
return self.weight * output
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
self.repeats = n_heads // n_kv_heads
|
||||
|
||||
head_dim = args.hidden_size // n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||
self.rope = nn.RoPE(
|
||||
head_dim, traditional=args.rope_traditional, base=args.rope_theta
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
def repeat(a):
|
||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||
return a.reshape([B, self.n_heads, L, -1])
|
||||
|
||||
if self.repeats > 1:
|
||||
keys, values = map(repeat, (keys, values))
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output), (keys, values)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
||||
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.num_attention_heads = args.num_attention_heads
|
||||
self.hidden_size = args.hidden_size
|
||||
self.self_attn = Attention(args)
|
||||
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
||||
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.args = args
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r
|
||||
return out, cache
|
||||
|
||||
|
||||
class LlamaModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
assert self.vocab_size > 0
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [
|
||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||
]
|
||||
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.embed_tokens(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for e, layer in enumerate(self.layers):
|
||||
h, cache[e] = layer(h, mask, cache[e])
|
||||
|
||||
return self.norm(h), cache
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.model = LlamaModel(args)
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out, cache = self.model(inputs, cache)
|
||||
return self.lm_head(out), cache
|
||||
|
||||
|
||||
def load(path_or_hf_repo: str):
|
||||
# If the path exists, it will try to load model form it
|
||||
# otherwise download and cache from the hf_repo and cache
|
||||
model_path = Path(path_or_hf_repo)
|
||||
if not model_path.exists():
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_hf_repo,
|
||||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||||
)
|
||||
)
|
||||
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
quantization = config.get("quantization", None)
|
||||
model_args = ModelArgs.from_dict(config)
|
||||
|
||||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||||
if len(weight_files) == 0:
|
||||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||||
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
|
||||
model = Model(model_args)
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
mx.eval(model.parameters())
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path,
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def generate(prompt: mx.array, model: Model, temp: float = 0.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
y = prompt
|
||||
cache = None
|
||||
while True:
|
||||
logits, cache = model(y[None], cache=cache)
|
||||
logits = logits[:, -1, :]
|
||||
y = sample(logits)
|
||||
yield y
|
3
llms/hf_llm/requirements.txt
Normal file
3
llms/hf_llm/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
mlx>=0.0.7
|
||||
numpy
|
||||
transformers
|
@ -1,9 +1,9 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import json
|
||||
import time
|
||||
import glob
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
|
@ -27,7 +27,11 @@ class Tokenizer:
|
||||
|
||||
def encode(self, s: str) -> mx.array:
|
||||
return mx.array(
|
||||
self._tokenizer(s, return_tensors="np", return_attention_mask=False,)[
|
||||
self._tokenizer(
|
||||
s,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)[
|
||||
"input_ids"
|
||||
].squeeze(0)
|
||||
)
|
||||
|
@ -79,9 +79,13 @@ class StableDiffusion:
|
||||
|
||||
return x_t_prev
|
||||
|
||||
def _denoising_loop(self, x_T, T, conditioning, num_steps: int = 50, cfg_weight: float = 7.5):
|
||||
def _denoising_loop(
|
||||
self, x_T, T, conditioning, num_steps: int = 50, cfg_weight: float = 7.5
|
||||
):
|
||||
x_t = x_T
|
||||
for t, t_prev in self.sampler.timesteps(num_steps, start_time=T, dtype=self.dtype):
|
||||
for t, t_prev in self.sampler.timesteps(
|
||||
num_steps, start_time=T, dtype=self.dtype
|
||||
):
|
||||
x_t = self._denoising_step(x_t, t, t_prev, conditioning, cfg_weight)
|
||||
yield x_t
|
||||
|
||||
@ -100,7 +104,9 @@ class StableDiffusion:
|
||||
mx.random.seed(seed)
|
||||
|
||||
# Get the text conditioning
|
||||
conditioning = self._get_text_conditioning(text, n_images, cfg_weight, negative_text)
|
||||
conditioning = self._get_text_conditioning(
|
||||
text, n_images, cfg_weight, negative_text
|
||||
)
|
||||
|
||||
# Create the latent variables
|
||||
x_T = self.sampler.sample_prior(
|
||||
@ -108,7 +114,9 @@ class StableDiffusion:
|
||||
)
|
||||
|
||||
# Perform the denoising loop
|
||||
yield from self._denoising_loop(x_T, self.sampler.max_time, conditioning, num_steps, cfg_weight)
|
||||
yield from self._denoising_loop(
|
||||
x_T, self.sampler.max_time, conditioning, num_steps, cfg_weight
|
||||
)
|
||||
|
||||
def generate_latents_from_image(
|
||||
self,
|
||||
@ -130,7 +138,9 @@ class StableDiffusion:
|
||||
num_steps = int(num_steps * strength)
|
||||
|
||||
# Get the text conditioning
|
||||
conditioning = self._get_text_conditioning(text, n_images, cfg_weight, negative_text)
|
||||
conditioning = self._get_text_conditioning(
|
||||
text, n_images, cfg_weight, negative_text
|
||||
)
|
||||
|
||||
# Get the latents from the input image and add noise according to the
|
||||
# start time.
|
||||
@ -139,7 +149,9 @@ class StableDiffusion:
|
||||
x_T = self.sampler.add_noise(x_0, mx.array(start_step))
|
||||
|
||||
# Perform the denoising loop
|
||||
yield from self._denoising_loop(x_T, start_step, conditioning, num_steps, cfg_weight)
|
||||
yield from self._denoising_loop(
|
||||
x_T, start_step, conditioning, num_steps, cfg_weight
|
||||
)
|
||||
|
||||
def decode(self, x_t):
|
||||
x = self.autoencoder.decode(x_t)
|
||||
|
@ -381,7 +381,6 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
|
||||
def __call__(self, x, timestep, encoder_x, attn_mask=None, encoder_attn_mask=None):
|
||||
|
||||
# Compute the time embeddings
|
||||
temb = self.timesteps(timestep).astype(x.dtype)
|
||||
temb = self.time_embedding(temb)
|
||||
|
@ -86,8 +86,13 @@ if __name__ == "__main__":
|
||||
for model_name in models:
|
||||
model_path = f"{args.mlx_dir}/{model_name}"
|
||||
if not os.path.exists(model_path):
|
||||
print(f"\nDidn't find the MLX-format {model_name} model in the folder {args.mlx_dir}. Lauching conversion")
|
||||
subprocess.run(f"python convert.py --torch-name-or-path {model_name} --mlx-path {model_path}", shell=True)
|
||||
print(
|
||||
f"\nDidn't find the MLX-format {model_name} model in the folder {args.mlx_dir}. Lauching conversion"
|
||||
)
|
||||
subprocess.run(
|
||||
f"python convert.py --torch-name-or-path {model_name} --mlx-path {model_path}",
|
||||
shell=True,
|
||||
)
|
||||
|
||||
print(f"\nModel: {model_name.upper()}")
|
||||
tokens = mx.array(
|
||||
|
@ -71,7 +71,9 @@ def _download(url: str, root: str) -> str:
|
||||
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
|
||||
return download_target
|
||||
else:
|
||||
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
||||
warnings.warn(
|
||||
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
|
||||
)
|
||||
|
||||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
||||
with tqdm(
|
||||
@ -132,7 +134,9 @@ def load_torch_model(
|
||||
alignment_heads = _ALIGNMENT_HEADS[name_or_path]
|
||||
name_or_path = _download(_MODELS[name_or_path], download_root)
|
||||
elif not Path(name_or_path).is_file():
|
||||
raise RuntimeError(f"Model {name_or_path} is neither found in {available_models()} nor as a local path")
|
||||
raise RuntimeError(
|
||||
f"Model {name_or_path} is neither found in {available_models()} nor as a local path"
|
||||
)
|
||||
|
||||
with open(name_or_path, "rb") as fp:
|
||||
checkpoint = torch.load(fp)
|
||||
@ -259,7 +263,9 @@ if __name__ == "__main__":
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
assert args.dtype in _VALID_DTYPES, f"dtype {args.dtype} not found in {_VALID_DTYPES}"
|
||||
assert (
|
||||
args.dtype in _VALID_DTYPES
|
||||
), f"dtype {args.dtype} not found in {_VALID_DTYPES}"
|
||||
dtype = getattr(mx, args.dtype)
|
||||
|
||||
print("[INFO] Loading")
|
||||
|
@ -10,6 +10,7 @@ from pathlib import Path
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
from convert import load_torch_model, quantize, torch_to_mlx
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
import whisper
|
||||
@ -17,8 +18,6 @@ import whisper.audio as audio
|
||||
import whisper.decoding as decoding
|
||||
import whisper.load_models as load_models
|
||||
|
||||
from convert import load_torch_model, quantize, torch_to_mlx
|
||||
|
||||
MODEL_NAME = "tiny"
|
||||
MLX_FP32_MODEL_PATH = "mlx_models/tiny_fp32"
|
||||
MLX_FP16_MODEL_PATH = "mlx_models/tiny_fp16"
|
||||
@ -189,7 +188,9 @@ class TestWhisper(unittest.TestCase):
|
||||
self.assertAlmostEqual(result.compression_ratio, 1.2359550561797752)
|
||||
|
||||
def test_transcribe(self):
|
||||
result = whisper.transcribe(TEST_AUDIO, model_path=MLX_FP32_MODEL_PATH, fp16=False)
|
||||
result = whisper.transcribe(
|
||||
TEST_AUDIO, model_path=MLX_FP32_MODEL_PATH, fp16=False
|
||||
)
|
||||
self.assertEqual(
|
||||
result["text"],
|
||||
(
|
||||
@ -208,7 +209,9 @@ class TestWhisper(unittest.TestCase):
|
||||
print("bash path_to_whisper_repo/whisper/assets/download_alice.sh")
|
||||
return
|
||||
|
||||
result = whisper.transcribe(audio_file, model_path=MLX_FP32_MODEL_PATH, fp16=False)
|
||||
result = whisper.transcribe(
|
||||
audio_file, model_path=MLX_FP32_MODEL_PATH, fp16=False
|
||||
)
|
||||
self.assertEqual(len(result["text"]), 10920)
|
||||
self.assertEqual(result["language"], "en")
|
||||
self.assertEqual(len(result["segments"]), 77)
|
||||
|
Loading…
Reference in New Issue
Block a user