fix fp16 + nits

This commit is contained in:
Awni Hannun 2023-12-14 08:08:28 -08:00
parent 88d7b67e6e
commit a8d4149147

View File

@ -1,12 +1,14 @@
import argparse
from typing import Optional
from dataclasses import dataclass
from mlx.utils import tree_unflatten, tree_map
from mlx.utils import tree_unflatten
from transformers import AutoTokenizer
import mlx.core as mx
import mlx.nn as nn
import math
@dataclass
class ModelArgs:
max_sequence_length: int = 2048
@ -17,17 +19,22 @@ class ModelArgs:
rotary_dim: int = 32
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
class RoPEAttention(nn.Module):
def __init__(self, dims: int, num_heads: int, bias: bool = True):
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
super().__init__()
self.num_heads = num_heads
self.rope = nn.RoPE(dims // num_heads, traditional=True)
self.query_proj = nn.Linear(dims, dims, bias=bias)
self.key_proj = nn.Linear(dims, dims, bias=bias)
self.value_proj = nn.Linear(dims, dims, bias=bias)
self.out_proj = nn.Linear(dims, dims, bias=bias)
self.rope = nn.RoPE(rotary_dim, traditional=False)
self.query_proj = nn.Linear(dims, dims)
self.key_proj = nn.Linear(dims, dims)
self.value_proj = nn.Linear(dims, dims)
self.out_proj = nn.Linear(dims, dims)
def __call__(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
@ -54,25 +61,28 @@ class RoPEAttention(nn.Module):
queries = self.rope(queries)
keys = self.rope(keys)
queries = queries.astype(mx.float32)
keys = keys.astype(mx.float32)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1)
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
# Note that we return the keys and values to possibly be used as a cache
return self.out_proj(values_hat), (keys, values)
class ParallelBlock(nn.Module):
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None):
def __init__(self, config: ModelArgs):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.self_attention = RoPEAttention(dims, num_heads, bias=True)
self.ln = nn.LayerNorm(dims)
dims = config.model_dim
mlp_dims = dims * 4
self.self_attention = RoPEAttention(dims, config.num_heads, config.rotary_dim)
self.ln = LayerNorm(dims)
self.fc1 = nn.Linear(dims, mlp_dims)
self.fc2 = nn.Linear(mlp_dims, dims)
self.act = nn.GELU(approx="precise")
@ -85,11 +95,9 @@ class ParallelBlock(nn.Module):
class TransformerDecoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
def __init__(self, config: ModelArgs):
super().__init__()
self.h = [ParallelBlock(dims, num_heads, mlp_dims) for i in range(num_layers)]
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
def __call__(self, x, mask, cache):
if cache is None:
@ -102,7 +110,7 @@ class TransformerDecoder(nn.Module):
class OutputHead(nn.Module):
def __init__(self, config: ModelArgs) -> None:
self.ln = nn.LayerNorm(config.model_dim)
self.ln = LayerNorm(config.model_dim)
self.linear = nn.Linear(config.model_dim, config.num_vocab)
def __call__(self, inputs):
@ -112,11 +120,7 @@ class OutputHead(nn.Module):
class Phi2(nn.Module):
def __init__(self, config: ModelArgs):
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
self.transformer = TransformerDecoder(
num_layers=config.num_layers,
dims=config.model_dim,
num_heads=config.num_heads,
)
self.transformer = TransformerDecoder(config)
self.lm_head = OutputHead(config)
def __call__(
@ -153,33 +157,58 @@ def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
yield y
if __name__ == "__main__":
def load_model():
model = Phi2(ModelArgs())
weights = mx.load("weights/phi-2.npz")
weights = mx.load("weights.npz")
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: mx.array(p, mx.float32), weights)
model.update(weights)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
prompt = tokenizer("Write a detailed analogy between mathematics and a lighthouse.",
return model, tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Phi-2 inference script")
parser.add_argument(
"--prompt",
help="The message to be processed by the model",
default="Write a detailed analogy between mathematics and a lighthouse.",
)
parser.add_argument(
"--max_tokens",
"-m",
type=int,
default=100,
help="Maximum number of tokens to generate",
)
parser.add_argument(
"--temp",
help="The sampling temperature.",
type=float,
default=0.0,
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
args = parser.parse_args()
mx.random.seed(args.seed)
model, tokenizer = load_model()
prompt = tokenizer(
args.prompt,
return_tensors="np",
return_attention_mask=False,
)["input_ids"]
prompt = mx.array(prompt)
tokens_per_eval = 1
max_tokens = 100
tokens = []
for token, _ in zip(generate(prompt, model), range(max_tokens)):
for token, _ in zip(generate(prompt, model), range(args.max_tokens)):
tokens.append(token)
if (len(tokens) % tokens_per_eval) == 0:
if (len(tokens) % args.tokens_per_eval) == 0:
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, end="", flush=True)
tokens = []