mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-31 20:04:38 +08:00
LoRA: Support HuggingFace dataset via data parameter (#996)
* LoRA: support huggingface dataset via `data` argument * LoRA: Extract the load_custom_hf_dataset function * LoRA: split small functions * fix spelling errors * handle load hf dataset error * fix pre-commit lint * update data argument help * nits and doc --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -76,17 +76,14 @@ class CompletionsDataset(Dataset):
|
||||
return text
|
||||
|
||||
|
||||
def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
|
||||
# Return empty dataset for non-existent paths
|
||||
if not path.exists():
|
||||
return []
|
||||
with open(path, "r") as fid:
|
||||
data = [json.loads(l) for l in fid]
|
||||
if "messages" in data[0]:
|
||||
def create_dataset(data, tokenizer: PreTrainedTokenizer = None):
|
||||
sample = data[0]
|
||||
|
||||
if "messages" in sample:
|
||||
return ChatDataset(data, tokenizer)
|
||||
elif "prompt" in data[0] and "completion" in data[0]:
|
||||
elif "prompt" in sample and "completion" in sample:
|
||||
return CompletionsDataset(data, tokenizer)
|
||||
elif "text" in data[0]:
|
||||
elif "text" in sample:
|
||||
return Dataset(data)
|
||||
else:
|
||||
raise ValueError(
|
||||
@@ -95,54 +92,90 @@ def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
|
||||
)
|
||||
|
||||
|
||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
if getattr(args, "hf_dataset", None) is not None:
|
||||
import datasets
|
||||
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
|
||||
def load_subset(path):
|
||||
if not path.exists():
|
||||
return []
|
||||
with open(path, "r") as fid:
|
||||
data = [json.loads(l) for l in fid]
|
||||
return create_dataset(data, tokenizer)
|
||||
|
||||
hf_args = args.hf_dataset
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
text_feature = hf_args.get("text_feature")
|
||||
prompt_feature = hf_args.get("prompt_feature")
|
||||
completion_feature = hf_args.get("completion_feature")
|
||||
names = ("train", "valid", "test")
|
||||
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
||||
return train, valid, test
|
||||
|
||||
def create_hf_dataset(split: str = None):
|
||||
ds = datasets.load_dataset(
|
||||
dataset_name,
|
||||
split=split,
|
||||
**hf_args.get("config", {}),
|
||||
)
|
||||
if prompt_feature and completion_feature:
|
||||
return CompletionsDataset(
|
||||
ds, tokenizer, prompt_feature, completion_feature
|
||||
)
|
||||
elif text_feature:
|
||||
return Dataset(train_ds, text_key=text_feature)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Specify either a prompt and completion feature or a text "
|
||||
"feature for the Hugging Face dataset."
|
||||
)
|
||||
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(split=train_split)
|
||||
valid = create_hf_dataset(split=valid_split)
|
||||
else:
|
||||
train, valid = [], []
|
||||
if args.test:
|
||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
||||
else:
|
||||
test = []
|
||||
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
|
||||
from datasets import exceptions, load_dataset
|
||||
|
||||
try:
|
||||
dataset = load_dataset(data_id)
|
||||
|
||||
else:
|
||||
names = ("train", "valid", "test")
|
||||
data_path = Path(args.data)
|
||||
|
||||
train, valid, test = [
|
||||
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
|
||||
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
|
||||
for n in names
|
||||
]
|
||||
|
||||
except exceptions.DatasetNotFoundError:
|
||||
raise ValueError(f"Not found Hugging Face dataset: {data_id} .")
|
||||
|
||||
return train, valid, test
|
||||
|
||||
|
||||
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
import datasets
|
||||
|
||||
hf_args = args.hf_dataset
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
text_feature = hf_args.get("text_feature")
|
||||
prompt_feature = hf_args.get("prompt_feature")
|
||||
completion_feature = hf_args.get("completion_feature")
|
||||
|
||||
def create_hf_dataset(split: str = None):
|
||||
ds = datasets.load_dataset(
|
||||
dataset_name,
|
||||
split=split,
|
||||
**hf_args.get("config", {}),
|
||||
)
|
||||
if prompt_feature and completion_feature:
|
||||
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
||||
elif text_feature:
|
||||
return Dataset(train_ds, text_key=text_feature)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Specify either a prompt and completion feature or a text "
|
||||
"feature for the Hugging Face dataset."
|
||||
)
|
||||
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(split=train_split)
|
||||
valid = create_hf_dataset(split=valid_split)
|
||||
else:
|
||||
train, valid = [], []
|
||||
if args.test:
|
||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
||||
else:
|
||||
test = []
|
||||
|
||||
return train, valid, test
|
||||
|
||||
|
||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
if getattr(args, "hf_dataset", None) is not None:
|
||||
train, valid, test = load_custom_hf_dataset(args, tokenizer)
|
||||
else:
|
||||
data_path = Path(args.data)
|
||||
if data_path.exists():
|
||||
train, valid, test = load_local_dataset(data_path, tokenizer)
|
||||
else:
|
||||
print(f"Loading Hugging Face dataset {args.data}.")
|
||||
train, valid, test = load_hf_dataset(args.data, tokenizer)
|
||||
|
||||
if args.train and len(train) == 0:
|
||||
raise ValueError(
|
||||
"Training set not found or empty. Must provide training set for fine-tuning."
|
||||
|
Reference in New Issue
Block a user