LoRA: Support HuggingFace dataset via data parameter (#996)

* LoRA: support huggingface dataset via `data` argument

* LoRA: Extract the load_custom_hf_dataset function

* LoRA: split small functions

* fix spelling errors

* handle load hf dataset error

* fix pre-commit lint

* update data argument help

* nits and doc

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
madroid
2024-09-30 22:36:21 +08:00
committed by GitHub
parent 50e5ca81a8
commit aa1c8abdc6
3 changed files with 93 additions and 51 deletions

View File

@@ -76,17 +76,14 @@ class CompletionsDataset(Dataset):
return text
def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
# Return empty dataset for non-existent paths
if not path.exists():
return []
with open(path, "r") as fid:
data = [json.loads(l) for l in fid]
if "messages" in data[0]:
def create_dataset(data, tokenizer: PreTrainedTokenizer = None):
sample = data[0]
if "messages" in sample:
return ChatDataset(data, tokenizer)
elif "prompt" in data[0] and "completion" in data[0]:
elif "prompt" in sample and "completion" in sample:
return CompletionsDataset(data, tokenizer)
elif "text" in data[0]:
elif "text" in sample:
return Dataset(data)
else:
raise ValueError(
@@ -95,54 +92,90 @@ def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
)
def load_dataset(args, tokenizer: PreTrainedTokenizer):
if getattr(args, "hf_dataset", None) is not None:
import datasets
def load_local_dataset(data_path: Path, tokenizer: PreTrainedTokenizer):
def load_subset(path):
if not path.exists():
return []
with open(path, "r") as fid:
data = [json.loads(l) for l in fid]
return create_dataset(data, tokenizer)
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature = hf_args.get("text_feature")
prompt_feature = hf_args.get("prompt_feature")
completion_feature = hf_args.get("completion_feature")
names = ("train", "valid", "test")
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
return train, valid, test
def create_hf_dataset(split: str = None):
ds = datasets.load_dataset(
dataset_name,
split=split,
**hf_args.get("config", {}),
)
if prompt_feature and completion_feature:
return CompletionsDataset(
ds, tokenizer, prompt_feature, completion_feature
)
elif text_feature:
return Dataset(train_ds, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature or a text "
"feature for the Hugging Face dataset."
)
if args.train:
train_split = hf_args.get("train_split", "train[:80%]")
valid_split = hf_args.get("valid_split", "train[-10%:]")
train = create_hf_dataset(split=train_split)
valid = create_hf_dataset(split=valid_split)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(split=hf_args.get("test_split"))
else:
test = []
def load_hf_dataset(data_id: str, tokenizer: PreTrainedTokenizer):
from datasets import exceptions, load_dataset
try:
dataset = load_dataset(data_id)
else:
names = ("train", "valid", "test")
data_path = Path(args.data)
train, valid, test = [
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
create_dataset(dataset[n], tokenizer) if n in dataset.keys() else []
for n in names
]
except exceptions.DatasetNotFoundError:
raise ValueError(f"Not found Hugging Face dataset: {data_id} .")
return train, valid, test
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
import datasets
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature = hf_args.get("text_feature")
prompt_feature = hf_args.get("prompt_feature")
completion_feature = hf_args.get("completion_feature")
def create_hf_dataset(split: str = None):
ds = datasets.load_dataset(
dataset_name,
split=split,
**hf_args.get("config", {}),
)
if prompt_feature and completion_feature:
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
elif text_feature:
return Dataset(train_ds, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature or a text "
"feature for the Hugging Face dataset."
)
if args.train:
train_split = hf_args.get("train_split", "train[:80%]")
valid_split = hf_args.get("valid_split", "train[-10%:]")
train = create_hf_dataset(split=train_split)
valid = create_hf_dataset(split=valid_split)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(split=hf_args.get("test_split"))
else:
test = []
return train, valid, test
def load_dataset(args, tokenizer: PreTrainedTokenizer):
if getattr(args, "hf_dataset", None) is not None:
train, valid, test = load_custom_hf_dataset(args, tokenizer)
else:
data_path = Path(args.data)
if data_path.exists():
train, valid, test = load_local_dataset(data_path, tokenizer)
else:
print(f"Loading Hugging Face dataset {args.data}.")
train, valid, test = load_hf_dataset(args.data, tokenizer)
if args.train and len(train) == 0:
raise ValueError(
"Training set not found or empty. Must provide training set for fine-tuning."