mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-29 18:26:37 +08:00
nits + format
This commit is contained in:
parent
68538a6e1d
commit
aa3defcfb0
@ -1,4 +1,4 @@
|
|||||||
# Copyright © 2023-2024 Apple Inc.
|
# Copyright © 2024 Apple Inc.
|
||||||
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Any, Dict, Optional, Union
|
from typing import Any, Dict, Optional, Union
|
||||||
@ -13,43 +13,30 @@ from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_atten
|
|||||||
class ModelArgs(BaseModelArgs):
|
class ModelArgs(BaseModelArgs):
|
||||||
model_type: str
|
model_type: str
|
||||||
hidden_size: int
|
hidden_size: int
|
||||||
num_hidden_layers: int
|
num_layers: int
|
||||||
intermediate_size: int
|
intermediate_size: int
|
||||||
num_attention_heads: int
|
num_attention_heads: int
|
||||||
rms_norm_eps: float
|
|
||||||
vocab_size: int
|
vocab_size: int
|
||||||
rope_theta: float
|
rope_theta: float
|
||||||
embed_dropout: float
|
|
||||||
attention_dropout: float
|
|
||||||
layer_norm_epsilon: float
|
layer_norm_epsilon: float
|
||||||
activation_function: str
|
num_key_value_heads: int
|
||||||
num_key_value_heads: Optional[int] = None
|
|
||||||
head_dim: Optional[int] = None
|
head_dim: Optional[int] = None
|
||||||
max_position_embeddings: Optional[int] = None
|
max_position_embeddings: Optional[int] = None
|
||||||
rope_traditional: bool = False
|
rope_traditional: bool = False
|
||||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||||
tie_word_embeddings: bool = True
|
tie_word_embeddings: bool = True
|
||||||
attn_implementation: str = "eager"
|
|
||||||
# For simplicity, we assume no bias in Q, K, V, and MLP similar to the original code
|
|
||||||
attention_bias: bool = False
|
attention_bias: bool = False
|
||||||
mlp_bias: bool = False
|
mlp_bias: bool = False
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_dict(cls, params):
|
|
||||||
if 'num_layers' in params:
|
|
||||||
params['num_hidden_layers'] = params['num_layers']
|
|
||||||
if 'layer_norm_epsilon' in params:
|
|
||||||
params['rms_norm_eps'] = params['layer_norm_epsilon']
|
|
||||||
return super().from_dict(params)
|
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
if self.num_key_value_heads is None:
|
|
||||||
self.num_key_value_heads = self.num_attention_heads
|
|
||||||
|
|
||||||
if self.rope_scaling:
|
if self.rope_scaling:
|
||||||
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get("rope_type")
|
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
|
||||||
|
"rope_type"
|
||||||
|
)
|
||||||
if rope_type is None:
|
if rope_type is None:
|
||||||
raise ValueError("rope_scaling must contain either 'type' or 'rope_type'")
|
raise ValueError(
|
||||||
|
"rope_scaling must contain either 'type' or 'rope_type'"
|
||||||
|
)
|
||||||
if rope_type not in ["linear", "dynamic", "llama3", "default"]:
|
if rope_type not in ["linear", "dynamic", "llama3", "default"]:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"rope_scaling 'type' currently only supports 'linear', 'dynamic', 'llama3', or 'default'"
|
"rope_scaling 'type' currently only supports 'linear', 'dynamic', 'llama3', or 'default'"
|
||||||
@ -113,25 +100,24 @@ def initialize_rope(args: ModelArgs):
|
|||||||
|
|
||||||
|
|
||||||
class AttentionModule(nn.Module):
|
class AttentionModule(nn.Module):
|
||||||
# This module corresponds to "attention" inside "attn"
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
dim = args.hidden_size
|
dim = args.hidden_size
|
||||||
self.n_heads = n_heads = args.num_attention_heads
|
self.n_heads = n_heads = args.num_attention_heads
|
||||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||||
self.head_dim = head_dim = args.head_dim or (dim // n_heads)
|
self.head_dim = head_dim = args.head_dim or (dim // n_heads)
|
||||||
self.scale = head_dim ** -0.5
|
self.scale = head_dim**-0.5
|
||||||
|
|
||||||
# Match naming exactly: q_proj, k_proj, v_proj, out_proj
|
|
||||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
|
||||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
||||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
||||||
self.out_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias)
|
self.out_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias)
|
||||||
|
|
||||||
self.rope = initialize_rope(args)
|
self.rope = initialize_rope(args)
|
||||||
self.attention_dropout = args.attention_dropout
|
|
||||||
|
|
||||||
def __call__(self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None) -> mx.array:
|
def __call__(
|
||||||
|
self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None
|
||||||
|
) -> mx.array:
|
||||||
B, L, D = x.shape
|
B, L, D = x.shape
|
||||||
q = self.q_proj(x).reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
q = self.q_proj(x).reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
k = self.k_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
k = self.k_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
@ -145,21 +131,20 @@ class AttentionModule(nn.Module):
|
|||||||
q = self.rope(q)
|
q = self.rope(q)
|
||||||
k = self.rope(k)
|
k = self.rope(k)
|
||||||
|
|
||||||
|
out = scaled_dot_product_attention(
|
||||||
out = scaled_dot_product_attention(q, k, v, cache=cache, scale=self.scale, mask=mask)
|
q, k, v, cache=cache, scale=self.scale, mask=mask
|
||||||
|
)
|
||||||
out = out.transpose(0, 2, 1, 3).reshape(B, L, D)
|
out = out.transpose(0, 2, 1, 3).reshape(B, L, D)
|
||||||
return self.out_proj(out)
|
return self.out_proj(out)
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
class Attention(nn.Module):
|
||||||
# This corresponds to "attn" module that contains "attention"
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.attention = AttentionModule(args)
|
self.attention = AttentionModule(args)
|
||||||
|
|
||||||
|
|
||||||
class MLP(nn.Module):
|
class MLP(nn.Module):
|
||||||
# This corresponds to "mlp" module that contains c_fc_0, c_fc_1, c_proj
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
dim = args.hidden_size
|
dim = args.hidden_size
|
||||||
@ -168,20 +153,16 @@ class MLP(nn.Module):
|
|||||||
self.c_fc_1 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias)
|
self.c_fc_1 = nn.Linear(dim, hidden_dim, bias=args.mlp_bias)
|
||||||
self.c_proj = nn.Linear(hidden_dim, dim, bias=args.mlp_bias)
|
self.c_proj = nn.Linear(hidden_dim, dim, bias=args.mlp_bias)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def __call__(self, x: mx.array) -> mx.array:
|
def __call__(self, x: mx.array) -> mx.array:
|
||||||
return self.c_proj(nn.silu(self.c_fc_0(x)) * self.c_fc_1(x))
|
return self.c_proj(nn.silu(self.c_fc_0(x)) * self.c_fc_1(x))
|
||||||
|
|
||||||
|
|
||||||
class TransformerBlock(nn.Module):
|
class TransformerBlock(nn.Module):
|
||||||
# A single layer: transformer.h.<layer>
|
|
||||||
# contains: ln_1, attn, ln_2, mlp
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.ln_1 = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
self.ln_1 = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||||
self.attn = Attention(args)
|
self.attn = Attention(args)
|
||||||
self.ln_2 = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
self.ln_2 = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||||
self.mlp = MLP(args)
|
self.mlp = MLP(args)
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
@ -196,16 +177,11 @@ class TransformerBlock(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class ExaoneModel(nn.Module):
|
class ExaoneModel(nn.Module):
|
||||||
# top-level: transformer
|
|
||||||
# contains: wte, h, ln_f
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# all these must be attributes of self.transformer to have "transformer." prefix
|
|
||||||
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
|
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)]
|
self.h = [TransformerBlock(args) for _ in range(args.num_layers)]
|
||||||
self.ln_f = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
self.ln_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||||
|
|
||||||
self.embed_dropout = args.embed_dropout
|
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
@ -213,23 +189,22 @@ class ExaoneModel(nn.Module):
|
|||||||
cache=None,
|
cache=None,
|
||||||
):
|
):
|
||||||
h = self.wte(inputs)
|
h = self.wte(inputs)
|
||||||
#h = nn.dropout(h, p=self.embed_dropout)
|
|
||||||
mask = create_attention_mask(h, cache)
|
mask = create_attention_mask(h, cache)
|
||||||
|
|
||||||
if cache is None:
|
if cache is None:
|
||||||
cache = [None] * len(self.h)
|
cache = [None] * len(self.h)
|
||||||
|
|
||||||
for (layer, c) in zip(self.h, cache):
|
for layer, c in zip(self.h, cache):
|
||||||
h = layer(h, mask, cache=c)
|
h = layer(h, mask, cache=c)
|
||||||
|
|
||||||
return self.ln_f(h)
|
return self.ln_f(h)
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
class Model(nn.Module):
|
||||||
# The final model, containing `transformer` and optionally `lm_head`
|
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
|
self.model_type = args.model_type
|
||||||
self.transformer = ExaoneModel(args)
|
self.transformer = ExaoneModel(args)
|
||||||
if not args.tie_word_embeddings:
|
if not args.tie_word_embeddings:
|
||||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
@ -241,15 +216,11 @@ class Model(nn.Module):
|
|||||||
):
|
):
|
||||||
out = self.transformer(inputs, cache)
|
out = self.transformer(inputs, cache)
|
||||||
if self.args.tie_word_embeddings:
|
if self.args.tie_word_embeddings:
|
||||||
# tie_word_embeddings means lm_head shares weight with wte
|
|
||||||
out = self.transformer.wte.as_linear(out)
|
out = self.transformer.wte.as_linear(out)
|
||||||
else:
|
else:
|
||||||
out = self.lm_head(out)
|
out = self.lm_head(out)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def sanitize(self, weights):
|
|
||||||
return {k: v for k, v in weights.items()}
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def layers(self):
|
def layers(self):
|
||||||
return self.transformer.h
|
return self.transformer.h
|
||||||
|
@ -144,6 +144,8 @@ def linear_to_lora_layers(
|
|||||||
"mixer.out_proj",
|
"mixer.out_proj",
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
elif model.model_type == "exaone":
|
||||||
|
keys = set(["attn.attention.q_proj", "attn.attention.v_proj"])
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Lora does not support {model.model_type}")
|
raise ValueError(f"Lora does not support {model.model_type}")
|
||||||
|
|
||||||
|
@ -812,6 +812,25 @@ class TestModels(unittest.TestCase):
|
|||||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def test_exaone(self):
|
||||||
|
from mlx_lm.models import exaone
|
||||||
|
|
||||||
|
args = exaone.ModelArgs(
|
||||||
|
model_type="exaone",
|
||||||
|
hidden_size=128,
|
||||||
|
num_layers=4,
|
||||||
|
intermediate_size=256,
|
||||||
|
num_attention_heads=8,
|
||||||
|
num_key_value_heads=2,
|
||||||
|
vocab_size=1000,
|
||||||
|
layer_norm_epsilon=1e-4,
|
||||||
|
rope_theta=10000,
|
||||||
|
)
|
||||||
|
model = exaone.Model(args)
|
||||||
|
self.model_test_runner(
|
||||||
|
model, args.model_type, args.vocab_size, args.num_layers
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
Loading…
Reference in New Issue
Block a user