mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
159
llms/mlx_lm/models/olmo.py
Normal file
159
llms/mlx_lm/models/olmo.py
Normal file
@@ -0,0 +1,159 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
|
||||
try:
|
||||
import hf_olmo
|
||||
except ImportError:
|
||||
print("To run olmo install ai2-olmo: pip install ai2-olmo")
|
||||
exit(1)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
d_model: int
|
||||
n_layers: int
|
||||
mlp_hidden_size: int
|
||||
n_heads: int
|
||||
vocab_size: int
|
||||
embedding_size: int
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
model_type: str = None
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_heads = args.n_heads
|
||||
dim = args.d_model
|
||||
|
||||
self.ff_proj = nn.Linear(dim, args.mlp_hidden_size, bias=False)
|
||||
self.ff_out = nn.Linear(args.mlp_hidden_size // 2, dim, bias=False)
|
||||
|
||||
self.att_norm = LayerNorm(dim, affine=False)
|
||||
self.ff_norm = LayerNorm(dim, affine=False)
|
||||
|
||||
head_dim = dim // self.n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.att_proj = nn.Linear(dim, 3 * dim, bias=False)
|
||||
self.attn_out = nn.Linear(dim, dim, bias=False)
|
||||
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
)
|
||||
|
||||
self.args = args
|
||||
|
||||
def attend(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = mx.split(self.att_proj(x), 3, axis=-1)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.attn_out(output), (keys, values)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.attend(self.att_norm(x), mask, cache)
|
||||
h = x + r
|
||||
|
||||
x1, x2 = mx.split(self.ff_proj(self.ff_norm(h)), 2, axis=-1)
|
||||
out = h + self.ff_out(nn.silu(x2) * x1)
|
||||
return out, cache
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_layers = args.n_layers
|
||||
self.wte = nn.Embedding(args.embedding_size, args.d_model)
|
||||
self.blocks = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
||||
self.ff_out = nn.Linear(args.d_model, args.embedding_size, bias=False)
|
||||
self.norm = LayerNorm(args.d_model, affine=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.wte(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.blocks)
|
||||
|
||||
for e, block in enumerate(self.blocks):
|
||||
h, cache[e] = block(h, mask, cache[e])
|
||||
|
||||
return self.ff_out(self.norm(h)), cache
|
||||
|
||||
|
||||
class OlmoModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.transformer = Transformer(args)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
return self.transformer(inputs, cache)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.model = OlmoModel(args)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
return self.model(inputs, cache)
|
Reference in New Issue
Block a user