Olmo in MLX LM (#415)

* run olmo

* format
This commit is contained in:
Awni Hannun 2024-02-05 21:13:49 -08:00 committed by GitHub
parent 7fbca214b1
commit aa7447efa2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 171 additions and 6 deletions

View File

@ -9,7 +9,8 @@ from mlx.utils import tree_flatten
from .tuner.lora import LoRALinear
from .tuner.trainer import TrainingArgs, evaluate, train
from .utils import generate, load, LORA_SUPPORTED_MODELS
from .utils import LORA_SUPPORTED_MODELS, generate, load
def build_parser():
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
@ -203,7 +204,7 @@ if __name__ == "__main__":
steps_per_eval=args.steps_per_eval,
steps_per_save=args.save_every,
adapter_file=args.adapter_file,
max_seq_length=args.max_seq_length
max_seq_length=args.max_seq_length,
)
if args.train:
print("Training")

159
llms/mlx_lm/models/olmo.py Normal file
View File

@ -0,0 +1,159 @@
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
try:
import hf_olmo
except ImportError:
print("To run olmo install ai2-olmo: pip install ai2-olmo")
exit(1)
@dataclass
class ModelArgs(BaseModelArgs):
d_model: int
n_layers: int
mlp_hidden_size: int
n_heads: int
vocab_size: int
embedding_size: int
rope_theta: float = 10000
rope_traditional: bool = False
model_type: str = None
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
dim = args.d_model
self.ff_proj = nn.Linear(dim, args.mlp_hidden_size, bias=False)
self.ff_out = nn.Linear(args.mlp_hidden_size // 2, dim, bias=False)
self.att_norm = LayerNorm(dim, affine=False)
self.ff_norm = LayerNorm(dim, affine=False)
head_dim = dim // self.n_heads
self.scale = head_dim**-0.5
self.att_proj = nn.Linear(dim, 3 * dim, bias=False)
self.attn_out = nn.Linear(dim, dim, bias=False)
self.rope = nn.RoPE(
head_dim,
traditional=args.rope_traditional,
base=args.rope_theta,
)
self.args = args
def attend(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = mx.split(self.att_proj(x), 3, axis=-1)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.attn_out(output), (keys, values)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attend(self.att_norm(x), mask, cache)
h = x + r
x1, x2 = mx.split(self.ff_proj(self.ff_norm(h)), 2, axis=-1)
out = h + self.ff_out(nn.silu(x2) * x1)
return out, cache
class Transformer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_layers = args.n_layers
self.wte = nn.Embedding(args.embedding_size, args.d_model)
self.blocks = [TransformerBlock(args=args) for _ in range(args.n_layers)]
self.ff_out = nn.Linear(args.d_model, args.embedding_size, bias=False)
self.norm = LayerNorm(args.d_model, affine=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.wte(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.blocks)
for e, block in enumerate(self.blocks):
h, cache[e] = block(h, mask, cache[e])
return self.ff_out(self.norm(h)), cache
class OlmoModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.transformer = Transformer(args)
def __call__(
self,
inputs: mx.array,
cache=None,
):
return self.transformer(inputs, cache)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model = OlmoModel(args)
def __call__(
self,
inputs: mx.array,
cache=None,
):
return self.model(inputs, cache)

View File

@ -12,7 +12,7 @@ from huggingface_hub import snapshot_download
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
# Local imports
from .models import llama, mixtral, phi2, plamo, qwen, stablelm_epoch, qwen2
from .models import llama, mixtral, olmo, phi2, plamo, qwen, qwen2, stablelm_epoch
from .tuner.utils import apply_lora_layers
# Constants
@ -24,10 +24,15 @@ MODEL_MAPPING = {
"stablelm_epoch": stablelm_epoch,
"qwen": qwen,
"plamo": plamo,
"qwen2": qwen2
"olmo": olmo,
"qwen2": qwen2,
}
LORA_SUPPORTED_MODELS = [
llama.Model, mixtral.Model, phi2.Model, stablelm_epoch.Model, qwen2.Model
llama.Model,
mixtral.Model,
phi2.Model,
stablelm_epoch.Model,
qwen2.Model,
]
MAX_FILE_SIZE_GB = 5

View File

@ -8,7 +8,7 @@ with open(Path(__file__).parent / "mlx_lm/requirements.txt") as fid:
requirements = [str(r) for r in pkg_resources.parse_requirements(fid)]
setup(
name="mlx-lm",
version="0.0.6",
version="0.0.8",
description="LLMs on Apple silicon with MLX and the Hugging Face Hub",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",