mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-21 20:46:50 +08:00
updates
This commit is contained in:
parent
595125ad4e
commit
aa7a11c753
@ -16,55 +16,77 @@ from mlx.utils import tree_flatten
|
|||||||
from trainer import TrainingArgs, TrainingCallback, grad_checkpoint
|
from trainer import TrainingArgs, TrainingCallback, grad_checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def compute_ppo_loss(
|
|
||||||
new_logprobs: mx.array,
|
|
||||||
old_logprobs: mx.array,
|
|
||||||
values: mx.array,
|
|
||||||
old_values: mx.array,
|
|
||||||
advantages: mx.array,
|
|
||||||
returns: mx.array,
|
|
||||||
padding_mask: mx.array,
|
|
||||||
padding_mask_p1: mx.array = None,
|
|
||||||
vf_coef: float = 0.5,
|
|
||||||
cliprange: float = 0.2,
|
|
||||||
cliprange_value: float = 0.2
|
|
||||||
) -> tuple[mx.array, mx.array, mx.array]:
|
|
||||||
"""Compute PPO loss with policy and value components and masking"""
|
|
||||||
padding_mask_p1 = padding_mask_p1 if padding_mask_p1 is not None else padding_mask
|
|
||||||
|
|
||||||
# Value loss
|
|
||||||
vpred_clipped = mx.clip(values, old_values - cliprange_value, old_values + cliprange_value)
|
|
||||||
vf_losses = mx.maximum(
|
|
||||||
mx.square(values - returns),
|
|
||||||
mx.square(vpred_clipped - returns)
|
|
||||||
)
|
|
||||||
vf_loss = 0.5 * mx.mean(mx.where(~padding_mask_p1, vf_losses, 0))
|
|
||||||
|
|
||||||
# Policy loss
|
|
||||||
ratio = mx.exp(new_logprobs - old_logprobs)
|
|
||||||
pg_losses = mx.maximum(
|
|
||||||
-advantages * ratio,
|
|
||||||
-advantages * mx.clip(ratio, 1.0 - cliprange, 1.0 + cliprange)
|
|
||||||
)
|
|
||||||
pg_loss = mx.mean(mx.where(~padding_mask, pg_losses, 0))
|
|
||||||
|
|
||||||
total_loss = pg_loss + vf_coef * vf_loss
|
|
||||||
return total_loss, pg_loss, vf_loss
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class PPOTrainingArgs(TrainingArgs):
|
class PPOTrainingArgs(TrainingArgs):
|
||||||
vf_coef: float = field(default=0.5, metadata={"help": "Value function coefficient"})
|
vf_coef: float = field(default=0.5, metadata={"help": "Value function coefficient"})
|
||||||
cliprange: float = field(default=0.2, metadata={"help": "Policy gradient clipping range"})
|
cliprange: float = field(default=0.2, metadata={"help": "Policy gradient clipping range"})
|
||||||
cliprange_value: float = field(default=0.2, metadata={"help": "Value function clipping range"})
|
cliprange_value: float = field(default=0.2, metadata={"help": "Value function clipping range"})
|
||||||
|
gamma: float = field(default=0.99, metadata={"help": "Discount factor"})
|
||||||
|
lambda_: float = field(default=0.95, metadata={"help": "GAE lambda"})
|
||||||
|
|
||||||
|
|
||||||
|
def compute_returns(
|
||||||
|
rewards: mx.array,
|
||||||
|
gamma: float = 0.99
|
||||||
|
) -> mx.array:
|
||||||
|
"""Compute returns with Generalized Advantage Estimation"""
|
||||||
|
returns = mx.zeros_like(rewards)
|
||||||
|
running_return = 0
|
||||||
|
|
||||||
|
for t in reversed(range(len(rewards))):
|
||||||
|
running_return = rewards[t] + gamma * running_return
|
||||||
|
returns = returns.at[t].set(running_return)
|
||||||
|
|
||||||
|
return returns
|
||||||
|
|
||||||
|
def compute_advantages(
|
||||||
|
values: mx.array,
|
||||||
|
returns: mx.array,
|
||||||
|
rewards: mx.array,
|
||||||
|
gamma: float = 0.99,
|
||||||
|
lambda_: float = 0.95
|
||||||
|
) -> mx.array:
|
||||||
|
"""Compute advantages using GAE"""
|
||||||
|
advantages = mx.zeros_like(returns)
|
||||||
|
running_advantage = 0
|
||||||
|
|
||||||
|
for t in reversed(range(len(returns))):
|
||||||
|
if t < len(returns) - 1:
|
||||||
|
delta = rewards[t] + gamma * values[t + 1] - values[t]
|
||||||
|
else:
|
||||||
|
delta = rewards[t] - values[t]
|
||||||
|
|
||||||
|
running_advantage = delta + gamma * lambda_ * running_advantage
|
||||||
|
advantages = advantages.at[t].set(running_advantage)
|
||||||
|
|
||||||
|
return (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
||||||
|
|
||||||
|
def make_predictions(model, x, mask):
|
||||||
|
inputs = x[:, :-1]
|
||||||
|
targets = x[:, 1:]
|
||||||
|
|
||||||
|
logits = model(inputs)
|
||||||
|
logits = logits.astype(mx.float32)
|
||||||
|
|
||||||
|
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
|
||||||
|
|
||||||
|
def compute_rewards(model, x, mask, reward_scale=1.0):
|
||||||
|
"""
|
||||||
|
Compute rewards based on model predictions and actual targets.
|
||||||
|
Basic implementation using log probabilities as rewards.
|
||||||
|
"""
|
||||||
|
logits = model(x[:, :-1])
|
||||||
|
targets = x[:, 1:]
|
||||||
|
|
||||||
|
log_probs = -nn.losses.cross_entropy(logits, targets, reduction='none')
|
||||||
|
rewards = log_probs * mask[:, :-1] * reward_scale
|
||||||
|
|
||||||
|
return rewards
|
||||||
|
|
||||||
def ppo_loss(
|
def ppo_loss(
|
||||||
model,
|
model,
|
||||||
inputs,
|
inputs,
|
||||||
targets,
|
mask,
|
||||||
lengths,
|
|
||||||
old_logprobs,
|
old_logprobs,
|
||||||
values,
|
values,
|
||||||
old_values,
|
old_values,
|
||||||
@ -74,13 +96,9 @@ def ppo_loss(
|
|||||||
cliprange=0.2,
|
cliprange=0.2,
|
||||||
cliprange_value=0.2
|
cliprange_value=0.2
|
||||||
):
|
):
|
||||||
# Get new logits and create length mask
|
|
||||||
logits = model(inputs).astype(mx.float32)
|
|
||||||
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
|
|
||||||
|
|
||||||
# Get new log probs
|
# Get new log probs
|
||||||
new_logprobs = nn.losses.cross_entropy(logits, targets) * length_mask
|
new_logprobs = make_predictions(model, inputs, mask)
|
||||||
ntoks = length_mask.sum()
|
ntoks = mask[:, :-1].sum()
|
||||||
new_logprobs = new_logprobs.sum() / ntoks
|
new_logprobs = new_logprobs.sum() / ntoks
|
||||||
|
|
||||||
# Value loss with clipping
|
# Value loss with clipping
|
||||||
@ -101,58 +119,52 @@ def ppo_loss(
|
|||||||
return total_loss, pg_loss, vf_loss, ntoks
|
return total_loss, pg_loss, vf_loss, ntoks
|
||||||
|
|
||||||
|
|
||||||
def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
|
def iterate_ppo_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
|
||||||
# Sort by length:
|
# Sort by length
|
||||||
idx = sorted(range(len(dataset)), key=lambda idx: len(dataset[idx]))
|
idx = sorted(range(len(dataset)), key=lambda idx: len(dataset[idx]))
|
||||||
if len(dataset) < batch_size:
|
if len(dataset) < batch_size:
|
||||||
raise ValueError(
|
raise ValueError(f"Dataset must have at least batch_size={batch_size} examples but only has {len(dataset)}.")
|
||||||
f"Dataset must have at least batch_size={batch_size}"
|
|
||||||
f" examples but only has {len(dataset)}."
|
|
||||||
)
|
|
||||||
|
|
||||||
# If running in distributed mode (N machines) then each one should skip N-1
|
# Handle distributed training
|
||||||
# samples
|
step = mx.distributed.init().size()
|
||||||
step = mx.distributed.init().size()
|
if batch_size % step != 0:
|
||||||
if batch_size % step != 0:
|
raise ValueError("The batch size must be divisible by the number of workers")
|
||||||
raise ValueError("The batch size must be divisible by the number of workers")
|
|
||||||
|
|
||||||
# Make the batches:
|
# Make batches
|
||||||
batch_idx = [
|
batch_idx = [idx[i:i+batch_size:step] for i in range(0, len(idx)-batch_size+1, batch_size)]
|
||||||
idx[i : i + batch_size : step]
|
|
||||||
for i in range(0, len(idx) - batch_size + 1, batch_size)
|
|
||||||
]
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
indices = np.random.permutation(len(batch_idx))
|
indices = np.random.permutation(len(batch_idx))
|
||||||
for i in indices:
|
for i in indices:
|
||||||
batch = [dataset[j] for j in batch_idx[i]]
|
batch = [dataset[j] for j in batch_idx[i]]
|
||||||
lengths = [len(x) for x in batch]
|
lengths = [len(x) for x in batch]
|
||||||
if max(lengths) > max_seq_length:
|
|
||||||
print(
|
|
||||||
f"[WARNING] Some sequences are longer than {max_seq_length} tokens. "
|
|
||||||
f"The longest sentence {max(lengths)} will be truncated to {max_seq_length}. "
|
|
||||||
"Consider pre-splitting your data to save memory."
|
|
||||||
)
|
|
||||||
|
|
||||||
# Pad to the nearest multiple of 8 or the maximum length
|
# Handle sequence length
|
||||||
pad_to = 8
|
if max(lengths) > max_seq_length:
|
||||||
max_length_in_batch = pad_to * ((max(lengths) + pad_to - 1) // pad_to)
|
print(f"[WARNING] Truncating sequences longer than {max_seq_length}")
|
||||||
max_length_in_batch = min(max_length_in_batch, max_seq_length)
|
|
||||||
|
|
||||||
batch_arr = np.zeros((batch_size // step, max_length_in_batch), np.int32)
|
# Pad to multiple of 8
|
||||||
|
pad_to = 8
|
||||||
|
max_length_in_batch = pad_to * ((max(lengths) + pad_to - 1) // pad_to)
|
||||||
|
max_length_in_batch = min(max_length_in_batch, max_seq_length)
|
||||||
|
|
||||||
for j in range(batch_size // step):
|
# Create batch array
|
||||||
truncated_length = min(lengths[j], max_seq_length)
|
batch_arr = np.zeros((batch_size // step, max_length_in_batch), np.int32)
|
||||||
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
|
mask = np.zeros((batch_size // step, max_length_in_batch), np.int32)
|
||||||
lengths[j] = (
|
|
||||||
truncated_length # Update lengths to match truncated lengths
|
|
||||||
)
|
|
||||||
batch = mx.array(batch_arr)
|
|
||||||
|
|
||||||
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
|
for j in range(batch_size // step):
|
||||||
|
truncated_length = min(lengths[j], max_seq_length)
|
||||||
|
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
|
||||||
|
mask[j, :truncated_length] = 1
|
||||||
|
lengths[j] = truncated_length
|
||||||
|
|
||||||
if not train:
|
batch = mx.array(batch_arr)
|
||||||
break
|
mask = mx.array(mask)
|
||||||
|
|
||||||
|
yield batch, mask
|
||||||
|
|
||||||
|
if not train:
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
def evaluate(
|
def evaluate(
|
||||||
@ -170,8 +182,8 @@ def evaluate(
|
|||||||
vf_coef=0.5,
|
vf_coef=0.5,
|
||||||
cliprange=0.2,
|
cliprange=0.2,
|
||||||
cliprange_value=0.2,
|
cliprange_value=0.2,
|
||||||
loss: callable = compute_ppo_loss,
|
loss: callable = ppo_loss,
|
||||||
iterate_batches: callable = iterate_batches,
|
iterate_ppo_batches: callable = iterate_ppo_batches,
|
||||||
):
|
):
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
total_pg_loss = 0
|
total_pg_loss = 0
|
||||||
@ -182,7 +194,7 @@ def evaluate(
|
|||||||
|
|
||||||
for _, batch in zip(
|
for _, batch in zip(
|
||||||
index_iterator,
|
index_iterator,
|
||||||
iterate_batches(
|
iterate_ppo_batches(
|
||||||
dataset=dataset,
|
dataset=dataset,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
@ -221,12 +233,12 @@ def train(
|
|||||||
optimizer,
|
optimizer,
|
||||||
train_dataset,
|
train_dataset,
|
||||||
val_dataset,
|
val_dataset,
|
||||||
args: TrainingArgs = TrainingArgs(),
|
args: PPOTrainingArgs = PPOTrainingArgs(),
|
||||||
loss: callable = ppo_loss,
|
loss: callable = ppo_loss,
|
||||||
iterate_batches: callable = iterate_batches,
|
iterate_ppo_batches: callable = iterate_ppo_batches,
|
||||||
training_callback: TrainingCallback = None,
|
training_callback: TrainingCallback = None,
|
||||||
):
|
):
|
||||||
print(f"Starting training..., iters: {args.iters}")
|
print(f"Starting PPO training..., iters: {args.iters}")
|
||||||
world = mx.distributed.init()
|
world = mx.distributed.init()
|
||||||
world_size = world.size()
|
world_size = world.size()
|
||||||
rank = world.rank()
|
rank = world.rank()
|
||||||
@ -239,18 +251,38 @@ def train(
|
|||||||
state = [model.state, optimizer.state]
|
state = [model.state, optimizer.state]
|
||||||
|
|
||||||
def step(batch):
|
def step(batch):
|
||||||
# Forward and backward pass
|
x, mask = batch
|
||||||
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
|
||||||
|
|
||||||
# All reduce the gradients if running in distributed mode
|
# Initial forward pass
|
||||||
|
old_logprobs = make_predictions(model, x, mask)
|
||||||
|
values = model.value_head(x[:, :-1])
|
||||||
|
old_values = values.copy()
|
||||||
|
|
||||||
|
# Compute rewards (implement reward calculation based on your task)
|
||||||
|
rewards = compute_rewards(model, x, mask)
|
||||||
|
|
||||||
|
# Compute returns and advantages
|
||||||
|
returns = compute_returns(rewards, values, gamma=args.gamma)
|
||||||
|
advantages = compute_advantages(values, returns, rewards,
|
||||||
|
gamma=args.gamma,
|
||||||
|
lambda_=args.lambda_)
|
||||||
|
|
||||||
|
def loss_fn(model, x, mask):
|
||||||
|
total_loss, pg_loss, vf_loss, ntoks = ppo_loss(
|
||||||
|
model, x, mask,
|
||||||
|
old_logprobs, values, old_values,
|
||||||
|
advantages, returns,
|
||||||
|
vf_coef=args.vf_coef,
|
||||||
|
cliprange=args.cliprange,
|
||||||
|
cliprange_value=args.cliprange_value
|
||||||
|
)
|
||||||
|
return total_loss, ntoks, pg_loss, vf_loss
|
||||||
|
|
||||||
|
(loss_val, toks, pg_loss, vf_loss), grad = nn.value_and_grad(model, loss_fn)(x, mask)
|
||||||
grad = average_gradients(grad)
|
grad = average_gradients(grad)
|
||||||
|
|
||||||
# Model update
|
|
||||||
optimizer.update(model, grad)
|
optimizer.update(model, grad)
|
||||||
|
|
||||||
return lvalue, toks
|
return loss_val, toks, pg_loss, vf_loss
|
||||||
|
|
||||||
loss_value_and_grad = nn.value_and_grad(model, loss)
|
|
||||||
|
|
||||||
losses = 0
|
losses = 0
|
||||||
n_tokens = 0
|
n_tokens = 0
|
||||||
@ -260,7 +292,7 @@ def train(
|
|||||||
start = time.perf_counter()
|
start = time.perf_counter()
|
||||||
for it, batch in zip(
|
for it, batch in zip(
|
||||||
range(1, args.iters + 1),
|
range(1, args.iters + 1),
|
||||||
iterate_batches(
|
iterate_ppo_batches(
|
||||||
dataset=train_dataset,
|
dataset=train_dataset,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
batch_size=args.batch_size,
|
batch_size=args.batch_size,
|
||||||
@ -280,7 +312,7 @@ def train(
|
|||||||
batch_size=args.batch_size,
|
batch_size=args.batch_size,
|
||||||
num_batches=args.val_batches,
|
num_batches=args.val_batches,
|
||||||
max_seq_length=args.max_seq_length,
|
max_seq_length=args.max_seq_length,
|
||||||
iterate_batches=iterate_batches,
|
iterate_ppo_batches=iterate_ppo_batches,
|
||||||
)
|
)
|
||||||
val_time = time.perf_counter() - stop
|
val_time = time.perf_counter() - stop
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
Loading…
Reference in New Issue
Block a user