mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
support internlm2 (#797)
* support internlm2 * only attention projections --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
ca7ce60c91
commit
aac98ca6f4
@ -120,6 +120,7 @@ Here are a few examples of Hugging Face models that work with this example:
|
||||
- [pfnet/plamo-13b](https://huggingface.co/pfnet/plamo-13b)
|
||||
- [pfnet/plamo-13b-instruct](https://huggingface.co/pfnet/plamo-13b-instruct)
|
||||
- [stabilityai/stablelm-2-zephyr-1_6b](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b)
|
||||
- [internlm/internlm2-7b](https://huggingface.co/internlm/internlm2-7b)
|
||||
|
||||
Most
|
||||
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
|
||||
|
@ -12,6 +12,7 @@ LoRA (QLoRA).[^qlora] LoRA fine-tuning works with the following model families:
|
||||
- Gemma
|
||||
- OLMo
|
||||
- MiniCPM
|
||||
- InternLM2
|
||||
|
||||
## Contents
|
||||
|
||||
|
198
llms/mlx_lm/models/internlm2.py
Normal file
198
llms/mlx_lm/models/internlm2.py
Normal file
@ -0,0 +1,198 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
hidden_size: int
|
||||
num_hidden_layers: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
bias: bool = True
|
||||
num_key_value_heads: int = None
|
||||
rope_theta: float = 10000
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
tie_word_embeddings: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.num_key_value_heads is None:
|
||||
self.num_key_value_heads = self.num_attention_heads
|
||||
|
||||
if self.rope_scaling:
|
||||
required_keys = {"factor", "type"}
|
||||
if not all(key in self.rope_scaling for key in required_keys):
|
||||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||||
|
||||
if self.rope_scaling["type"] != "linear":
|
||||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
self.n_kv_groups = n_heads // args.num_key_value_heads
|
||||
|
||||
self.head_dim = head_dim = args.hidden_size // n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.wqkv = nn.Linear(
|
||||
dim, (n_heads + 2 * n_kv_heads) * head_dim, bias=args.bias
|
||||
)
|
||||
self.wo = nn.Linear(n_heads * head_dim, dim, bias=args.bias)
|
||||
|
||||
rope_scale = (
|
||||
1 / args.rope_scaling["factor"]
|
||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||
else 1
|
||||
)
|
||||
self.rope = nn.RoPE(
|
||||
head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=args.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
qkv_states = self.wqkv(x)
|
||||
qkv_states = qkv_states.reshape(B, L, -1, 2 + self.n_kv_groups, self.head_dim)
|
||||
|
||||
queries = qkv_states[..., : self.n_kv_groups, :]
|
||||
queries = queries.reshape(B, L, -1, self.head_dim)
|
||||
keys = qkv_states[..., -2, :]
|
||||
values = qkv_states[..., -1, :]
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.wo(output)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
||||
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
||||
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.attention = Attention(args)
|
||||
self.feed_forward = MLP(args.hidden_size, args.intermediate_size)
|
||||
self.attention_norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.ffn_norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r = self.attention(self.attention_norm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.feed_forward(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
|
||||
class InternLM2Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
assert args.vocab_size > 0
|
||||
self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [
|
||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.tok_embeddings(inputs)
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, cache=c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.model = InternLM2Model(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, cache)
|
||||
if self.args.tie_word_embeddings:
|
||||
out = self.model.tok_embeddings.as_linear(out)
|
||||
else:
|
||||
out = self.output(out)
|
||||
return out
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.args.hidden_size // self.args.num_attention_heads
|
||||
|
||||
@property
|
||||
def n_kv_heads(self):
|
||||
return self.args.num_key_value_heads
|
@ -119,6 +119,8 @@ def linear_to_lora_layers(
|
||||
keys = set(["mixer.Wqkv", "moe.gate"])
|
||||
elif model.model_type == "dbrx":
|
||||
keys = set(["norm_attn_norm.attn.Wqkv", "ffn.router.layer"])
|
||||
elif model.model_type == "internlm2":
|
||||
keys = set(["attention.wqkv", "attention.wo"])
|
||||
else:
|
||||
raise ValueError(f"Lora does not support {model.model_type}")
|
||||
|
||||
|
@ -397,6 +397,23 @@ class TestModels(unittest.TestCase):
|
||||
len(args.ffn_multipliers),
|
||||
)
|
||||
|
||||
def test_internlm2(self):
|
||||
from mlx_lm.models import internlm2
|
||||
|
||||
args = internlm2.ModelArgs(
|
||||
model_type="internlm2",
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=2048,
|
||||
num_attention_heads=4,
|
||||
rms_norm_eps=1e-5,
|
||||
vocab_size=10000,
|
||||
)
|
||||
model = internlm2.Model(args)
|
||||
self.model_test_runner(
|
||||
model, args.model_type, args.vocab_size, args.num_hidden_layers
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user