chore(mlx-lm): add load model with adapter and fix bug in sample (#360)

* chore: add load model with adapter support and fix bug in sample

* chore: ignore temp during calculating prob in sample
This commit is contained in:
Anchen 2024-01-23 19:47:39 -08:00 committed by GitHub
parent f5b80c95fb
commit ab91ac1075
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 14 additions and 4 deletions

View File

@ -1,10 +1,11 @@
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from .lora import LoRALinear
def apply_lora_layers(model, adapter_file: str):
def apply_lora_layers(model: nn.Module, adapter_file: str) -> nn.Module:
adapters = list(mx.load(adapter_file).items())
linear_replacements = {}
lora_layers = set(

View File

@ -13,6 +13,7 @@ from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
# Local imports
from .models import llama, mixtral, phi2, plamo, qwen
from .tuner.utils import apply_lora_layers
# Constants
MODEL_MAPPING = {
@ -98,11 +99,14 @@ def generate_step(
"""
def sample(logits: mx.array) -> Tuple[mx.array, float]:
softmax_logits = mx.softmax(logits)
if temp == 0:
token = mx.argmax(logits, axis=-1)
else:
token = mx.random.categorical(logits * (1 / temp))
prob = mx.softmax(logits / temp)[0, token]
prob = softmax_logits[0, token]
return token, prob
y = prompt
@ -237,7 +241,7 @@ def load_model(model_path: Path) -> nn.Module:
def load(
path_or_hf_repo: str, tokenizer_config={}
path_or_hf_repo: str, tokenizer_config={}, adapter_file: str = None
) -> Tuple[nn.Module, PreTrainedTokenizer]:
"""
Load the model and tokenizer from a given path or a huggingface repository.
@ -246,8 +250,10 @@ def load(
model_path (Path): The path or the huggingface repository to load the model from.
tokenizer_config (dict, optional): Configuration parameters specifically for the tokenizer.
Defaults to an empty dictionary.
adapter_file (str, optional): Path to the adapter file. If provided, applies LoRA layers to the model.
Defaults to None.
Returns:
nn.Module: The loaded model.
Tuple[nn.Module, PreTrainedTokenizer]: A tuple containing the loaded model and tokenizer.
Raises:
FileNotFoundError: If config file or safetensors are not found.
@ -256,6 +262,9 @@ def load(
model_path = get_model_path(path_or_hf_repo)
model = load_model(model_path)
if adapter_file is not None:
model = apply_lora_layers(model, adapter_file)
tokenizer = AutoTokenizer.from_pretrained(model_path, **tokenizer_config)
return model, tokenizer