args for quantization

This commit is contained in:
Awni Hannun
2023-12-20 21:08:03 -08:00
parent 89db6ffdfe
commit aced530649
3 changed files with 60 additions and 23 deletions

View File

@@ -23,16 +23,17 @@ tar -xf mistral-7B-v0.1.tar
Then, convert the weights with:
```
python convert.py
python convert.py --torch-path <path_to_torch>
```
To generate a 4-bit quantized model, use:
To generate a 4-bit quantized model, use ``-q``. For a full list of options:
```
python convert.py -q
python convert.py --help
```
The conversion script will save the converted weights in the same location.
By default, the conversion script will make the directory `mlx_model` and save
the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
> [!TIP]
> Alternatively, you can also download a few converted checkpoints from the
@@ -46,7 +47,7 @@ Once you've converted the weights to MLX format, you can generate text with
the Mistral model:
```
python mistral.py --prompt "It is a truth universally acknowledged," --temp 0
python mistral.py --prompt "It is a truth universally acknowledged,"
```
Run `python mistral.py --help` for more details.

View File

@@ -1,7 +1,9 @@
# Copyright © 2023 Apple Inc.
import argparse
import copy
import json
import shutil
from pathlib import Path
import mlx.core as mx
@@ -12,7 +14,7 @@ from mistral import Mistral, ModelArgs
from mlx.utils import tree_flatten, tree_map, tree_unflatten
def quantize(weights, config):
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
@@ -22,10 +24,13 @@ def quantize(weights, config):
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.QuantizedLinear.quantize_module(model)
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
# Update the config:
quantized_config["quantization"] = {"group_size": 64, "bits": 4}
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
@@ -34,10 +39,16 @@ def quantize(weights, config):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Mistral weights to MLX.")
parser.add_argument(
"--model-path",
"--torch-path",
type=str,
default="mistral-7B-v0.1/",
help="The path to the Mistral model. The MLX weights will also be saved there.",
help="The path to the PyTorch Mistral model.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
)
parser.add_argument(
"-q",
@@ -45,20 +56,46 @@ if __name__ == "__main__":
help="Generate a 4-bit quantized model.",
action="store_true",
)
parser.add_argument(
"--q_group_size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q_bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
model_path = Path(args.model_path)
state = torch.load(str(model_path / "consolidated.00.pth"))
torch_path = Path(args.torch_path)
state = torch.load(str(torch_path / "consolidated.00.pth"))
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
weights = {k: v.to(torch.float16).numpy() for k, v in state.items()}
with open(torch_path / "params.json", "r") as f:
config = json.loads(f.read())
if args.quantize:
print("[INFO] Quantizing")
weights, params = quantize(weights, params)
weights, config = quantize(weights, config, args)
np.savez(str(model_path / "weights.npz"), **weights)
# Save weights
import pdb
pdb.set_trace()
np.savez(str(mlx_path / "weights.npz"), **weights)
# Copy tokenizer
shutil.copyfile(
str(torch_path / "tokenizer.model"),
str(mlx_path / "tokenizer.model"),
)
# Save config.json with model_type
with open(model_path / "params.json", "r") as f:
config = json.loads(f.read())
with open(mlx_path / "config.json", "w") as f:
config["model_type"] = "mistral"
with open(model_path / "config.json", "w") as f:
json.dump(config, f, indent=4)

View File

@@ -8,7 +8,7 @@ from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_map, tree_unflatten
from mlx.utils import tree_unflatten
from sentencepiece import SentencePieceProcessor
@@ -189,7 +189,7 @@ class Tokenizer:
return out
def load_model(folder: str, dtype=mx.float16):
def load_model(folder: str):
model_path = Path(folder)
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
with open(model_path / "config.json", "r") as f:
@@ -200,7 +200,6 @@ def load_model(folder: str, dtype=mx.float16):
model_args = ModelArgs(**config)
weights = mx.load(str(model_path / "weights.npz"))
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: p.astype(dtype), weights)
model = Mistral(model_args)
if quantization is not None:
nn.QuantizedLinear.quantize_module(model, **quantization)
@@ -230,7 +229,7 @@ if __name__ == "__main__":
parser.add_argument(
"--model-path",
type=str,
default="mistral-7B-v0.1",
default="mlx_model",
help="The path to the model weights and tokenizer",
)
parser.add_argument(
@@ -239,7 +238,7 @@ if __name__ == "__main__":
default="In the beginning the Universe was created.",
)
parser.add_argument(
"--max_tokens",
"--max-tokens",
"-m",
type=int,
default=100,
@@ -249,7 +248,7 @@ if __name__ == "__main__":
"--temp",
help="The sampling temperature.",
type=float,
default=1.0,
default=0.0,
)
parser.add_argument(
"--tokens_per_eval",