mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-31 20:04:38 +08:00
one config processor
This commit is contained in:
@@ -118,33 +118,21 @@ def tiny_llama(model_path):
|
||||
def quantize(weights, config):
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from llama import Llama, ModelArgs
|
||||
from llama import Llama, ModelArgs, sanitize_config
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model
|
||||
config.pop("model_type", None)
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
if "rope_theta" not in config:
|
||||
config["rope_theta"] = 10000
|
||||
unused = ["multiple_of", "ffn_dim_multiplier"]
|
||||
for k in unused:
|
||||
config.pop(k, None)
|
||||
# Load the model:
|
||||
config = sanitize_config(config, weights)
|
||||
model = Llama(ModelArgs(**config))
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model)
|
||||
|
||||
# Update the config
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {"groups": 64, "width": 4}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
|
@@ -331,26 +331,30 @@ def few_shot_generate(args):
|
||||
print()
|
||||
|
||||
|
||||
def sanitize_config(config, weights):
|
||||
config.pop("model_type", None)
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
if "rope_theta" not in config:
|
||||
config["rope_theta"] = 10000
|
||||
unused = ["multiple_of", "ffn_dim_multiplier"]
|
||||
for k in unused:
|
||||
config.pop(k, None)
|
||||
return config
|
||||
|
||||
|
||||
def load_model(model_path):
|
||||
model_path = Path(model_path)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("model_type", None)
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
if "rope_theta" not in config:
|
||||
config["rope_theta"] = 10000
|
||||
unused = ["multiple_of", "ffn_dim_multiplier"]
|
||||
for k in unused:
|
||||
config.pop(k, None)
|
||||
config = sanitize_config(json.loads(f.read()), weights)
|
||||
quantization = config.pop("quantization", None)
|
||||
model = Llama(ModelArgs(**config))
|
||||
if quantization is not None:
|
||||
|
Reference in New Issue
Block a user