Add support for ibm granite (#758)

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* remove unused function

* rebase fix

* move position emebedding to mask creation

* add to tuner and format

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* add support for granite 3-8B config

* add gpt_bigcode

* add positional embedding condition.

* rebase fix

* move position emebedding to mask creation

* add to tuner and format

* refactor mask

* remove dropout layers
This commit is contained in:
Prince Canuma 2024-05-22 05:16:31 +02:00 committed by GitHub
parent 9fc6efbd90
commit b044ce2acf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 238 additions and 20 deletions

View File

@ -4,6 +4,13 @@ from dataclasses import dataclass
import mlx.core as mx
def create_additive_causal_mask(N: int, offset: int = 0):
rinds = mx.arange(offset + N)
linds = mx.arange(offset, offset + N) if offset else rinds
mask = linds[:, None] < rinds[None]
return mask * -1e9
class KVCache:
def __init__(self, head_dim, n_kv_heads):

View File

@ -0,0 +1,195 @@
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from .base import BaseModelArgs, create_additive_causal_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
n_embd: int
n_layer: int
n_inner: int
n_head: int
n_positions: int
layer_norm_epsilon: float
vocab_size: int
num_key_value_heads: int = None
multi_query: bool = True
attention_bias: bool = True
mlp_bias: bool = True
tie_word_embeddings: bool = True
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = 1 if self.multi_query else self.n_head
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.dim = dim = args.n_embd
self.n_heads = n_heads = args.n_head
self.n_kv_heads = n_kv_heads = 1 if args.multi_query else args.n_head
self.head_dim = head_dim = dim // n_heads
self.kv_dim = n_kv_heads * head_dim
self.scale = head_dim**-0.5
if hasattr(args, "attention_bias"):
attention_bias = args.attention_bias
else:
attention_bias = False
self.c_attn = nn.Linear(dim, dim + 2 * self.kv_dim, bias=attention_bias)
self.c_proj = nn.Linear(dim, dim, bias=attention_bias)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
qkv = self.c_attn(x)
queries, keys, values = mx.split(
qkv, [self.dim, self.dim + self.kv_dim], axis=-1
)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.c_proj(output)
class MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.n_embd
hidden_dim = args.n_inner
if hasattr(args, "mlp_bias"):
mlp_bias = args.mlp_bias
else:
mlp_bias = False
self.c_fc = nn.Linear(dim, hidden_dim, bias=mlp_bias)
self.c_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
def __call__(self, x) -> mx.array:
return self.c_proj(nn.gelu(self.c_fc(x)))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_head = args.n_head
self.n_embd = args.n_embd
self.attn = Attention(args)
self.mlp = MLP(args)
self.ln_1 = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon)
self.ln_2 = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r = self.attn(self.ln_1(x), mask, cache)
h = x + r
r = self.mlp(self.ln_2(h))
out = h + r
return out
class GPTBigCodeModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
self.wte = nn.Embedding(args.vocab_size, args.n_embd)
self.wpe = nn.Embedding(args.n_positions, args.n_embd)
self.h = [TransformerBlock(args=args) for _ in range(args.n_layer)]
self.ln_f = nn.LayerNorm(args.n_embd, eps=args.layer_norm_epsilon)
def __call__(
self,
inputs: mx.array,
cache=None,
):
B, L = inputs.shape
hidden_states = self.wte(inputs)
mask = None
if hidden_states.shape[1] > 1:
position_ids = mx.array(np.arange(L))
hidden_states += self.wpe(position_ids)
mask = create_additive_causal_mask(
hidden_states.shape[1], cache[0].offset if cache is not None else 0
)
mask = mask.astype(hidden_states.dtype)
if cache is None:
cache = [None] * len(self.h)
for layer, c in zip(self.h, cache):
hidden_states = layer(hidden_states, mask, cache=c)
return self.ln_f(hidden_states)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.transformer = GPTBigCodeModel(args)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.transformer(inputs, cache)
if self.args.tie_word_embeddings:
out = self.transformer.wte.as_linear(out)
else:
out = self.lm_head(out)
return out
@property
def layers(self):
return self.transformer.h
@property
def head_dim(self):
return self.args.n_embd // self.args.n_head
@property
def n_kv_heads(self):
return self.args.num_key_value_heads

View File

@ -4,7 +4,7 @@ from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
from .base import BaseModelArgs, create_additive_causal_mask
@dataclass
@ -17,9 +17,12 @@ class ModelArgs(BaseModelArgs):
rms_norm_eps: float
vocab_size: int
num_key_value_heads: int = None
attention_bias: bool = False
mlp_bias: bool = False
rope_theta: float = 10000
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
tie_word_embeddings: bool = True
def __post_init__(self):
if self.num_key_value_heads is None:
@ -44,11 +47,15 @@ class Attention(nn.Module):
head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
if hasattr(args, "attention_bias"):
attention_bias = args.attention_bias
else:
attention_bias = False
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
rope_scale = (
1 / args.rope_scaling["factor"]
@ -93,11 +100,19 @@ class Attention(nn.Module):
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
def __init__(self, args: ModelArgs):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
dim = args.hidden_size
hidden_dim = args.intermediate_size
if hasattr(args, "mlp_bias"):
mlp_bias = args.mlp_bias
else:
mlp_bias = False
self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
@ -109,7 +124,7 @@ class TransformerBlock(nn.Module):
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.mlp = MLP(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
@ -129,13 +144,6 @@ class TransformerBlock(nn.Module):
return out
def create_additive_causal_mask(N: int, offset: int = 0):
rinds = mx.arange(offset + N)
linds = mx.arange(offset, offset + N) if offset else rinds
mask = linds[:, None] < rinds[None]
return mask * -1e9
class LlamaModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
@ -175,10 +183,11 @@ class LlamaModel(nn.Module):
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = LlamaModel(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
self.args = args
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
@ -186,7 +195,11 @@ class Model(nn.Module):
cache=None,
):
out = self.model(inputs, cache)
return self.lm_head(out)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
def sanitize(self, weights):
# Remove unused precomputed rotary freqs

View File

@ -106,6 +106,9 @@ def linear_to_lora_layers(
if model.model_type == "qwen2_moe":
keys.add("mlp.gate")
keys.add("mlp.shared_expert_gate")
elif model.model_type == "gpt_bigcode":
keys = set(["attn.c_attn"])
elif model.model_type == "olmo":
keys = set(["att_proj"])
elif model.model_type == "openelm":