FLUX: support huggingface dataset

This commit is contained in:
madroid 2024-10-13 01:38:58 +08:00
parent ca88343118
commit b0de67ec03
3 changed files with 162 additions and 98 deletions

View File

@ -1,7 +1,6 @@
# Copyright © 2024 Apple Inc.
import argparse
import json
import time
from functools import partial
from pathlib import Path
@ -10,12 +9,11 @@ import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from PIL import Image
from mlx.nn.utils import average_gradients
from mlx.utils import tree_flatten, tree_map, tree_reduce
from PIL import Image
from tqdm import tqdm
from flux import FluxPipeline, load_dataset
from flux import FluxPipeline, load_dataset, Trainer
def generate_progress_images(iteration, flux, args):
@ -69,7 +67,7 @@ def setup_arg_parser():
parser.add_argument(
"--model",
default="dev",
default="schnell",
choices=[
"dev",
"schnell",
@ -188,6 +186,7 @@ if __name__ == "__main__":
optimizer = optim.Adam(learning_rate=lr_schedule)
state = [flux.flow.state, optimizer.state, mx.random.state]
@partial(mx.compile, inputs=state, outputs=state)
def single_step(x, t5_feat, clip_feat, guidance):
loss, grads = nn.value_and_grad(flux.flow, flux.training_loss)(
@ -198,12 +197,14 @@ if __name__ == "__main__":
return loss
@partial(mx.compile, inputs=state, outputs=state)
def compute_loss_and_grads(x, t5_feat, clip_feat, guidance):
return nn.value_and_grad(flux.flow, flux.training_loss)(
x, t5_feat, clip_feat, guidance
)
@partial(mx.compile, inputs=state, outputs=state)
def compute_loss_and_accumulate_grads(x, t5_feat, clip_feat, guidance, prev_grads):
loss, grads = nn.value_and_grad(flux.flow, flux.training_loss)(
@ -212,6 +213,7 @@ if __name__ == "__main__":
grads = tree_map(lambda a, b: a + b, prev_grads, grads)
return loss, grads
@partial(mx.compile, inputs=state, outputs=state)
def grad_accumulate_and_step(x, t5_feat, clip_feat, guidance, prev_grads):
loss, grads = nn.value_and_grad(flux.flow, flux.training_loss)(
@ -227,6 +229,7 @@ if __name__ == "__main__":
return loss
# We simply route to the appropriate step based on whether we have
# gradients from a previous step and whether we should be performing an
# update or simply computing and accumulating gradients in this step.
@ -249,10 +252,12 @@ if __name__ == "__main__":
x, t5_feat, clip_feat, guidance, prev_grads
)
print("Create the training dataset.", flush=True)
# print("Create the training dataset.", flush=True)
dataset = load_dataset(flux, args)
dataset.encode_images()
dataset.encode_prompts()
trainer = Trainer(flux, dataset, args)
trainer.encode_dataset()
guidance = mx.full((args.batch_size,), args.guidance, dtype=flux.dtype)
# An initial generation to compare
@ -261,16 +266,16 @@ if __name__ == "__main__":
grads = None
losses = []
tic = time.time()
for i, batch in zip(range(args.iterations), dataset.iterate(args.batch_size)):
for i, batch in zip(range(args.iterations), trainer.iterate(args.batch_size)):
loss, grads = step(*batch, guidance, grads, (i + 1) % args.grad_accumulate == 0)
mx.eval(loss, grads, state)
losses.append(loss.item())
if (i + 1) % 10 == 0:
toc = time.time()
peak_mem = mx.metal.get_peak_memory() / 1024**3
peak_mem = mx.metal.get_peak_memory() / 1024 ** 3
print(
f"Iter: {i+1} Loss: {sum(losses) / 10:.3f} "
f"Iter: {i + 1} Loss: {sum(losses) / 10:.3f} "
f"It/s: {10 / (toc - tic):.3f} "
f"Peak mem: {peak_mem:.3f} GB",
flush=True,

View File

@ -1,107 +1,68 @@
import json
from pathlib import Path
import mlx.core as mx
import numpy as np
from PIL import Image
from tqdm import tqdm
class Dataset:
def __init__(self, flux, args):
def __init__(self, flux, args, data):
self.args = args
self.flux = flux
self._data = data
def __getitem__(self, index: int):
item = self._data[index]
image = item['image']
prompt = item['prompt']
return image, prompt
def __len__(self):
if self._data is None:
return 0
return len(self._data)
class LocalDataset(Dataset):
def __init__(self, flux, args, data_file):
self.dataset_base = Path(args.dataset)
data_file = self.dataset_base / "train.jsonl"
if not data_file.exists():
raise ValueError(f"The fine-tuning dataset 'train.jsonl' was not found in the '{args.dataset}' path.")
with open(data_file, "r") as fid:
self.data = [json.loads(l) for l in fid]
self._data = [json.loads(l) for l in fid]
self.latents = []
self.t5_features = []
self.clip_features = []
super().__init__(flux, args, self._data)
def _random_crop_resize(self, img):
resolution = self.args.resolution
width, height = img.size
def __getitem__(self, index: int):
item = self._data[index]
image = Image.open(self.dataset_base / item["image"])
return image, item["prompt"]
a, b, c, d = mx.random.uniform(shape=(4,), stream=mx.cpu).tolist()
# Random crop the input image between 0.8 to 1.0 of its original dimensions
crop_size = (
max((0.8 + 0.2 * a) * width, resolution[0]),
max((0.8 + 0.2 * a) * height, resolution[1]),
)
pan = (width - crop_size[0], height - crop_size[1])
img = img.crop(
(
pan[0] * b,
pan[1] * c,
crop_size[0] + pan[0] * b,
crop_size[1] + pan[1] * c,
)
)
class HuggingFaceDataset(Dataset):
# Fit the largest rectangle with the ratio of resolution in the image
# rectangle.
width, height = crop_size
ratio = resolution[0] / resolution[1]
r1 = (height * ratio, height)
r2 = (width, width / ratio)
r = r1 if r1[0] <= width else r2
img = img.crop(
(
(width - r[0]) / 2,
(height - r[1]) / 2,
(width + r[0]) / 2,
(height + r[1]) / 2,
)
)
def __init__(self, flux, args):
from datasets import load_dataset
df = load_dataset(args.dataset)["train"]
self._data = df.data
super().__init__(flux, args, df)
# Finally resize the image to resolution
img = img.resize(resolution, Image.LANCZOS)
return mx.array(np.array(img))
def encode_images(self):
"""Encode the images in the latent space to prepare for training."""
self.flux.ae.eval()
for sample in tqdm(self.data, desc="encode images"):
input_img = Image.open(self.dataset_base / sample["image"])
for i in range(self.args.num_augmentations):
img = self._random_crop_resize(input_img)
img = (img[:, :, :3].astype(self.flux.dtype) / 255) * 2 - 1
x_0 = self.flux.ae.encode(img[None])
x_0 = x_0.astype(self.flux.dtype)
mx.eval(x_0)
self.latents.append(x_0)
def encode_prompts(self):
"""Pre-encode the prompts so that we don't recompute them during
training (doesn't allow finetuning the text encoders)."""
for sample in tqdm(self.data, desc="encode prompts"):
t5_tok, clip_tok = self.flux.tokenize([sample["prompt"]])
t5_feat = self.flux.t5(t5_tok)
clip_feat = self.flux.clip(clip_tok).pooled_output
mx.eval(t5_feat, clip_feat)
self.t5_features.append(t5_feat)
self.clip_features.append(clip_feat)
def iterate(self, batch_size):
xs = mx.concatenate(self.latents)
t5 = mx.concatenate(self.t5_features)
clip = mx.concatenate(self.clip_features)
mx.eval(xs, t5, clip)
n_aug = self.args.num_augmentations
while True:
x_indices = mx.random.permutation(len(self.latents))
c_indices = x_indices // n_aug
for i in range(0, len(self.latents), batch_size):
x_i = x_indices[i: i + batch_size]
c_i = c_indices[i: i + batch_size]
yield xs[x_i], t5[c_i], clip[c_i]
def __getitem__(self, index: int):
item = self._data[index]
return item['image'], item['prompt']
def load_dataset(flux, args):
return Dataset(flux, args)
dataset_base = Path(args.dataset)
data_file = dataset_base / "train.jsonl"
if data_file.exists():
print(f"Load the local dataset {data_file} .", flush=True)
# print(f"load local dataset: {data_file}")
dataset = LocalDataset(flux, args, data_file)
else:
print(f"Load the Hugging Face dataset {args.dataset} .", flush=True)
# print(f"load Hugging Face dataset: {args.dataset}")
dataset = HuggingFaceDataset(flux, args)
return dataset

98
flux/flux/trainer.py Normal file
View File

@ -0,0 +1,98 @@
import mlx.core as mx
import numpy as np
from PIL import Image, ImageFile
from tqdm import tqdm
from .datasets import Dataset
from .flux import FluxPipeline
class Trainer:
def __init__(self, flux: FluxPipeline, dataset: Dataset, args):
self.flux = flux
self.dataset = dataset
self.args = args
self.latents = []
self.t5_features = []
self.clip_features = []
def _random_crop_resize(self, img):
resolution = self.args.resolution
width, height = img.size
a, b, c, d = mx.random.uniform(shape=(4,), stream=mx.cpu).tolist()
# Random crop the input image between 0.8 to 1.0 of its original dimensions
crop_size = (
max((0.8 + 0.2 * a) * width, resolution[0]),
max((0.8 + 0.2 * a) * height, resolution[1]),
)
pan = (width - crop_size[0], height - crop_size[1])
img = img.crop(
(
pan[0] * b,
pan[1] * c,
crop_size[0] + pan[0] * b,
crop_size[1] + pan[1] * c,
)
)
# Fit the largest rectangle with the ratio of resolution in the image
# rectangle.
width, height = crop_size
ratio = resolution[0] / resolution[1]
r1 = (height * ratio, height)
r2 = (width, width / ratio)
r = r1 if r1[0] <= width else r2
img = img.crop(
(
(width - r[0]) / 2,
(height - r[1]) / 2,
(width + r[0]) / 2,
(height + r[1]) / 2,
)
)
# Finally resize the image to resolution
img = img.resize(resolution, Image.LANCZOS)
return mx.array(np.array(img))
def _encode_image(self, input_img: ImageFile.ImageFile, num_augmentations: int):
for i in range(num_augmentations):
img = self._random_crop_resize(input_img)
img = (img[:, :, :3].astype(self.flux.dtype) / 255) * 2 - 1
x_0 = self.flux.ae.encode(img[None])
x_0 = x_0.astype(self.flux.dtype)
mx.eval(x_0)
self.latents.append(x_0)
def _encode_prompt(self, prompt):
t5_tok, clip_tok = self.flux.tokenize([prompt])
t5_feat = self.flux.t5(t5_tok)
clip_feat = self.flux.clip(clip_tok).pooled_output
mx.eval(t5_feat, clip_feat)
self.t5_features.append(t5_feat)
self.clip_features.append(clip_feat)
def encode_dataset(self):
"""Encode the images & prompt in the latent space to prepare for training."""
self.flux.ae.eval()
for image, prompt in tqdm(self.dataset, desc="encode dataset"):
self._encode_image(image, self.args.num_augmentations)
self._encode_prompt(prompt)
def iterate(self, batch_size):
xs = mx.concatenate(self.latents)
t5 = mx.concatenate(self.t5_features)
clip = mx.concatenate(self.clip_features)
mx.eval(xs, t5, clip)
n_aug = self.args.num_augmentations
while True:
x_indices = mx.random.permutation(len(self.latents))
c_indices = x_indices // n_aug
for i in range(0, len(self.latents), batch_size):
x_i = x_indices[i: i + batch_size]
c_i = c_indices[i: i + batch_size]
yield xs[x_i], t5[c_i], clip[c_i]