updates + format

This commit is contained in:
Awni Hannun
2023-12-14 12:09:10 -08:00
parent 29b7a97342
commit b1b9b11801
4 changed files with 55 additions and 56 deletions

View File

@@ -12,7 +12,8 @@ parser.add_argument(
"--arch",
type=str,
default="resnet20",
help="model architecture [resnet20, resnet32, resnet44, resnet56, resnet110, resnet1202]",
choices=[f"resnet{d}" for d in [20, 32, 44, 56, 110, 1202]],
help="model architecture",
)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
@@ -21,10 +22,6 @@ parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only")
def loss_fn(model, inp, tgt):
return mx.mean(nn.losses.cross_entropy(model(inp), tgt))
def eval_fn(model, inp, tgt):
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
@@ -50,17 +47,25 @@ def train_epoch(model, train_iter, optimizer, epoch):
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
toc = time.perf_counter()
loss_value = loss.item()
acc_value = acc.item()
losses.append(loss_value)
accs.append(acc_value)
samples_per_sec.append(x.shape[0] / (toc - tic))
loss = loss.item()
acc = acc.item()
losses.append(loss)
accs.append(acc)
throughput = x.shape[0] / (toc - tic)
samples_per_sec.append(throughput)
if batch_counter % 10 == 0:
print(
f"Epoch {epoch:02d} [{batch_counter:03d}] | tr_loss {loss_value:.3f} | tr_acc {acc_value:.3f} | Throughput: {x.shape[0] / (toc - tic):.2f} images/second"
" | ".join(
(
f"Epoch {epoch:02d} [{batch_counter:03d}]",
f"Train loss {loss:.3f}",
f"Train acc {acc:.3f}",
f"Throughput: {throughput:.2f} images/second",
)
)
)
mean_tr_loss = mx.mean(mx.array(losses))
eean_tr_loss = mx.mean(mx.array(losses))
mean_tr_acc = mx.mean(mx.array(accs))
samples_per_sec = mx.mean(mx.array(samples_per_sec))
return mean_tr_loss, mean_tr_acc, samples_per_sec
@@ -81,24 +86,28 @@ def test_epoch(model, test_iter, epoch):
def main(args):
mx.random.seed(args.seed)
model = resnet.__dict__[args.arch]()
model = getattr(resnet, args.arch)()
print("num_params: {:0.04f} M".format(model.num_params() / 1e6))
mx.eval(model.parameters())
print("Number of params: {:0.04f} M".format(model.num_params() / 1e6))
optimizer = optim.Adam(learning_rate=args.lr)
train_data, test_data = get_cifar10(args.batch_size)
for epoch in range(args.epochs):
epoch_tr_loss, epoch_tr_acc, train_throughput = train_epoch(
model, train_data, optimizer, epoch
)
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
print(
f"Epoch: {epoch} | avg. tr_loss {epoch_tr_loss.item():.3f} | avg. tr_acc {epoch_tr_acc.item():.3f} | Train Throughput: {train_throughput.item():.2f} images/sec"
" | ".join(
(
f"Epoch: {epoch}",
f"avg. Train loss {tr_loss.item():.3f}",
f"avg. Train acc {tr_acc.item():.3f}",
f"Throughput: {throughput.item():.2f} images/sec",
)
)
)
epoch_test_acc = test_epoch(model, test_data, epoch)
print(f"Epoch: {epoch} | test_acc {epoch_test_acc.item():.3f}")
test_acc = test_epoch(model, test_data, epoch)
print(f"Epoch: {epoch} | Test acc {test_acc.item():.3f}")
train_data.reset()
test_data.reset()