Merge branch 'ml-explore:main' into adding-GRPO-training

This commit is contained in:
Gökdeniz Gülmez 2025-01-29 15:07:52 +01:00 committed by GitHub
commit b1e573d6e8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 274 additions and 21 deletions

View File

@ -14,4 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
- Markus Enzweiler: Added the `cvae` examples.
- Prince Canuma: Helped add support for `Starcoder2` models.
- Shiyu Li: Added the `Segment Anything Model`.
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Mamba` and support for `full-fine-tuning`.
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1` and support for `full-fine-tuning`.

View File

@ -2,6 +2,7 @@
import math
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, Optional, Tuple
import mlx.core as mx
@ -125,6 +126,12 @@ class DeepseekV3YarnRotaryEmbedding(nn.Module):
)
# A clipped silu to prevent fp16 from overflowing
@partial(mx.compile, shapeless=True)
def clipped_silu(x):
return mx.clip(x * mx.sigmoid(x), a_min=-100, a_max=100)
class DeepseekV3Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
@ -312,7 +319,10 @@ class DeepseekV3MoE(nn.Module):
self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
self.switch_mlp = SwitchGLU(
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
config.hidden_size,
config.moe_intermediate_size,
config.n_routed_experts,
activation=clipped_silu,
)
self.gate = MoEGate(config)
@ -359,11 +369,7 @@ class DeepseekV3DecoderLayer(nn.Module):
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
# Protect against overflow for fp16
if out.dtype == mx.float16:
out = mx.clip(out, a_min=None, a_max=mx.finfo(mx.float16).max - 1000)
return out
return h + r
class DeepseekV3Model(nn.Module):

View File

@ -0,0 +1,183 @@
from dataclasses import dataclass
from typing import Any, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
@dataclass
class ModelArgs(BaseModelArgs):
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
num_key_value_heads: int
rms_norm_eps: float
vocab_size: int
attention_bias: bool
head_dim: int
max_position_embeddings: int
mlp_bias: bool
model_type: str
rope_theta: float
tie_word_embeddings: bool
class HeliumAttention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
assert args.num_key_value_heads is not None
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class HeliumMLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.intermediate_size = args.intermediate_size
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=args.mlp_bias
)
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=args.mlp_bias
)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=args.mlp_bias
)
def __call__(self, x: mx.array) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class HeliumDecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.self_attn = HeliumAttention(args)
self.mlp = HeliumMLP(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class HeliumModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_hidden_layers = args.num_hidden_layers
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers)]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
h = self.embed_tokens(inputs)
if mask is None:
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = HeliumModel(args)
self.vocab_size = args.vocab_size
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
out = self.model(inputs, mask, cache)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
@property
def layers(self):
return self.model.layers

View File

@ -147,11 +147,11 @@ def min_p_sampling(
logprobs = logprobs * (1 / temperature)
# Indices sorted in decreasing order
sorted_indices = mx.argsort(-logprobs).squeeze(0)
sorted_logprobs = logprobs[..., sorted_indices]
sorted_indices = mx.argsort(-logprobs, axis=-1)
sorted_logprobs = mx.take_along_axis(logprobs, sorted_indices, axis=-1)
# Top probability
top_logprobs = logprobs[..., sorted_indices[0]]
top_logprobs = sorted_logprobs[:, 0:1]
# Calculate the min_p threshold
scaled_min_p = top_logprobs + math.log(min_p)
@ -163,9 +163,9 @@ def min_p_sampling(
# Create pool of tokens with probability less than scaled min_p
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
# Return sampled token
sorted_token = mx.random.categorical(selected_logprobs)
return sorted_indices[sorted_token]
# Return sampled tokens
sorted_tokens = mx.random.categorical(selected_logprobs, axis=-1)[:, None]
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
@ -185,7 +185,7 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=-1)
sorted_probs = probs[..., sorted_indices.squeeze(0)]
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=-1)
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
@ -196,10 +196,8 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
0,
)
sorted_token = mx.random.categorical(mx.log(top_probs))
token = sorted_indices.squeeze(0)[sorted_token]
return token
sorted_tokens = mx.random.categorical(mx.log(top_probs), axis=-1)[:, None]
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)

View File

@ -114,6 +114,33 @@ def convert_chat(messages: List[dict], role_mapping: Optional[dict] = None):
return prompt.rstrip()
def process_message_content(messages):
"""
Convert message content to a format suitable for `apply_chat_template`.
The function operates on messages in place. It converts the 'content' field
to a string instead of a list of text fragments.
Args:
message_list (list): A list of dictionaries, where each dictionary may
have a 'content' key containing a list of dictionaries with 'type' and
'text' keys.
Raises:
ValueError: If the 'content' type is not supported or if 'text' is missing.
"""
for message in messages:
content = message["content"]
if isinstance(content, list):
text_fragments = [
fragment["text"] for fragment in content if fragment["type"] == "text"
]
if len(text_fragments) != len(content):
raise ValueError("Only 'text' content type is supported.")
message["content"] = "".join(text_fragments)
@dataclass
class PromptCache:
cache: List[Any] = field(default_factory=list)
@ -591,8 +618,10 @@ class APIHandler(BaseHTTPRequestHandler):
self.request_id = f"chatcmpl-{uuid.uuid4()}"
self.object_type = "chat.completion.chunk" if self.stream else "chat.completion"
if self.tokenizer.chat_template:
messages = body["messages"]
process_message_content(messages)
prompt = self.tokenizer.apply_chat_template(
body["messages"],
messages,
body.get("tools", None),
add_generation_prompt=True,
)

View File

@ -94,6 +94,7 @@ def linear_to_lora_layers(
"phimoe",
"gemma",
"gemma2",
"helium",
"starcoder2",
"cohere",
"cohere2",

View File

@ -398,8 +398,9 @@ def speculative_generate_step(
quantize_cache_fn(cache)
logprobs = logits - mx.logsumexp(logits, keepdims=True)
y = sampler(logprobs).squeeze(0)
return y, logprobs.squeeze(0)
logprobs = logprobs.squeeze(0)
y = sampler(logprobs)
return y, logprobs
def _prefill(model, cache, y):
while y.size > prefill_step_size:

View File

@ -28,6 +28,12 @@ class TestSampleUtils(unittest.TestCase):
token = top_p_sampling(logits, 0.95, temperature).item()
self.assertTrue(token in (1, 2, 3))
# Batch mode works
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
logits = mx.log(probs)
tokens = top_p_sampling(logits, 0.5, temperature)
self.assertEqual(tokens.tolist(), [0, 1])
def test_min_p_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
@ -42,6 +48,12 @@ class TestSampleUtils(unittest.TestCase):
token = min_p_sampling(logits, 0.05)
self.assertTrue(token in (0, 3))
# Batch mode works
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
logits = mx.log(probs)
tokens = min_p_sampling(logits, 0.7)
self.assertEqual(tokens.tolist(), [0, 1])
def test_top_k_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)

View File

@ -80,6 +80,29 @@ class TestServer(unittest.TestCase):
self.assertIn("id", response_body)
self.assertIn("choices", response_body)
def test_handle_chat_completions_with_content_fragments(self):
url = f"http://localhost:{self.port}/v1/chat/completions"
chat_post_data = {
"model": "chat_model",
"max_tokens": 10,
"temperature": 0.7,
"top_p": 0.85,
"repetition_penalty": 1.2,
"messages": [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."}
],
},
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
],
}
response = requests.post(url, json=chat_post_data)
response_body = response.text
self.assertIn("id", response_body)
self.assertIn("choices", response_body)
def test_handle_models(self):
url = f"http://localhost:{self.port}/v1/models"
response = requests.get(url)