mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-30 21:31:14 +08:00
Merge branch 'ml-explore:main' into adding-GRPO-training
This commit is contained in:
commit
b1e573d6e8
@ -14,4 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
|
|||||||
- Markus Enzweiler: Added the `cvae` examples.
|
- Markus Enzweiler: Added the `cvae` examples.
|
||||||
- Prince Canuma: Helped add support for `Starcoder2` models.
|
- Prince Canuma: Helped add support for `Starcoder2` models.
|
||||||
- Shiyu Li: Added the `Segment Anything Model`.
|
- Shiyu Li: Added the `Segment Anything Model`.
|
||||||
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Mamba` and support for `full-fine-tuning`.
|
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1` and support for `full-fine-tuning`.
|
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
import math
|
import math
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
from functools import partial
|
||||||
from typing import Any, Dict, Optional, Tuple
|
from typing import Any, Dict, Optional, Tuple
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
@ -125,6 +126,12 @@ class DeepseekV3YarnRotaryEmbedding(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# A clipped silu to prevent fp16 from overflowing
|
||||||
|
@partial(mx.compile, shapeless=True)
|
||||||
|
def clipped_silu(x):
|
||||||
|
return mx.clip(x * mx.sigmoid(x), a_min=-100, a_max=100)
|
||||||
|
|
||||||
|
|
||||||
class DeepseekV3Attention(nn.Module):
|
class DeepseekV3Attention(nn.Module):
|
||||||
def __init__(self, config: ModelArgs):
|
def __init__(self, config: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -312,7 +319,10 @@ class DeepseekV3MoE(nn.Module):
|
|||||||
self.config = config
|
self.config = config
|
||||||
self.num_experts_per_tok = config.num_experts_per_tok
|
self.num_experts_per_tok = config.num_experts_per_tok
|
||||||
self.switch_mlp = SwitchGLU(
|
self.switch_mlp = SwitchGLU(
|
||||||
config.hidden_size, config.moe_intermediate_size, config.n_routed_experts
|
config.hidden_size,
|
||||||
|
config.moe_intermediate_size,
|
||||||
|
config.n_routed_experts,
|
||||||
|
activation=clipped_silu,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.gate = MoEGate(config)
|
self.gate = MoEGate(config)
|
||||||
@ -359,11 +369,7 @@ class DeepseekV3DecoderLayer(nn.Module):
|
|||||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||||
h = x + r
|
h = x + r
|
||||||
r = self.mlp(self.post_attention_layernorm(h))
|
r = self.mlp(self.post_attention_layernorm(h))
|
||||||
out = h + r
|
return h + r
|
||||||
# Protect against overflow for fp16
|
|
||||||
if out.dtype == mx.float16:
|
|
||||||
out = mx.clip(out, a_min=None, a_max=mx.finfo(mx.float16).max - 1000)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
class DeepseekV3Model(nn.Module):
|
class DeepseekV3Model(nn.Module):
|
||||||
|
183
llms/mlx_lm/models/helium.py
Normal file
183
llms/mlx_lm/models/helium.py
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Optional, Tuple
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
|
||||||
|
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs(BaseModelArgs):
|
||||||
|
hidden_size: int
|
||||||
|
num_hidden_layers: int
|
||||||
|
intermediate_size: int
|
||||||
|
num_attention_heads: int
|
||||||
|
num_key_value_heads: int
|
||||||
|
rms_norm_eps: float
|
||||||
|
vocab_size: int
|
||||||
|
attention_bias: bool
|
||||||
|
head_dim: int
|
||||||
|
max_position_embeddings: int
|
||||||
|
mlp_bias: bool
|
||||||
|
model_type: str
|
||||||
|
rope_theta: float
|
||||||
|
tie_word_embeddings: bool
|
||||||
|
|
||||||
|
|
||||||
|
class HeliumAttention(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
dim = args.hidden_size
|
||||||
|
self.n_heads = n_heads = args.num_attention_heads
|
||||||
|
assert args.num_key_value_heads is not None
|
||||||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||||
|
|
||||||
|
head_dim = args.hidden_size // n_heads
|
||||||
|
self.scale = head_dim**-0.5
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
|
||||||
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
||||||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
||||||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||||
|
self.rope = nn.RoPE(head_dim, traditional=True, base=args.rope_theta)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Any] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
B, L, D = x.shape
|
||||||
|
|
||||||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
|
|
||||||
|
# Prepare the queries, keys and values for the attention computation
|
||||||
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
if cache is not None:
|
||||||
|
queries = self.rope(queries, offset=cache.offset)
|
||||||
|
keys = self.rope(keys, offset=cache.offset)
|
||||||
|
keys, values = cache.update_and_fetch(keys, values)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
|
||||||
|
output = scaled_dot_product_attention(
|
||||||
|
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||||
|
)
|
||||||
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
return self.o_proj(output)
|
||||||
|
|
||||||
|
|
||||||
|
class HeliumMLP(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = args.hidden_size
|
||||||
|
self.intermediate_size = args.intermediate_size
|
||||||
|
|
||||||
|
self.gate_proj = nn.Linear(
|
||||||
|
self.hidden_size, self.intermediate_size, bias=args.mlp_bias
|
||||||
|
)
|
||||||
|
self.up_proj = nn.Linear(
|
||||||
|
self.hidden_size, self.intermediate_size, bias=args.mlp_bias
|
||||||
|
)
|
||||||
|
self.down_proj = nn.Linear(
|
||||||
|
self.intermediate_size, self.hidden_size, bias=args.mlp_bias
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, x: mx.array) -> mx.array:
|
||||||
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||||
|
|
||||||
|
|
||||||
|
class HeliumDecoderLayer(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = args.hidden_size
|
||||||
|
|
||||||
|
self.self_attn = HeliumAttention(args)
|
||||||
|
self.mlp = HeliumMLP(args)
|
||||||
|
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
self.post_attention_layernorm = nn.RMSNorm(
|
||||||
|
args.hidden_size, eps=args.rms_norm_eps
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Any] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||||
|
h = x + r
|
||||||
|
r = self.mlp(self.post_attention_layernorm(h))
|
||||||
|
out = h + r
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class HeliumModel(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.num_hidden_layers = args.num_hidden_layers
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
|
||||||
|
assert self.vocab_size > 0
|
||||||
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
|
|
||||||
|
self.layers = [HeliumDecoderLayer(args) for _ in range(args.num_hidden_layers)]
|
||||||
|
|
||||||
|
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
mask: mx.array = None,
|
||||||
|
cache=None,
|
||||||
|
) -> mx.array:
|
||||||
|
h = self.embed_tokens(inputs)
|
||||||
|
|
||||||
|
if mask is None:
|
||||||
|
mask = create_attention_mask(h, cache)
|
||||||
|
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
|
for layer, c in zip(self.layers, cache):
|
||||||
|
h = layer(h, mask, c)
|
||||||
|
|
||||||
|
return self.norm(h)
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.model_type = args.model_type
|
||||||
|
|
||||||
|
self.model = HeliumModel(args)
|
||||||
|
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
if not args.tie_word_embeddings:
|
||||||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
mask: mx.array = None,
|
||||||
|
cache=None,
|
||||||
|
) -> mx.array:
|
||||||
|
out = self.model(inputs, mask, cache)
|
||||||
|
if self.args.tie_word_embeddings:
|
||||||
|
out = self.model.embed_tokens.as_linear(out)
|
||||||
|
else:
|
||||||
|
out = self.lm_head(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
@property
|
||||||
|
def layers(self):
|
||||||
|
return self.model.layers
|
@ -147,11 +147,11 @@ def min_p_sampling(
|
|||||||
logprobs = logprobs * (1 / temperature)
|
logprobs = logprobs * (1 / temperature)
|
||||||
|
|
||||||
# Indices sorted in decreasing order
|
# Indices sorted in decreasing order
|
||||||
sorted_indices = mx.argsort(-logprobs).squeeze(0)
|
sorted_indices = mx.argsort(-logprobs, axis=-1)
|
||||||
sorted_logprobs = logprobs[..., sorted_indices]
|
sorted_logprobs = mx.take_along_axis(logprobs, sorted_indices, axis=-1)
|
||||||
|
|
||||||
# Top probability
|
# Top probability
|
||||||
top_logprobs = logprobs[..., sorted_indices[0]]
|
top_logprobs = sorted_logprobs[:, 0:1]
|
||||||
|
|
||||||
# Calculate the min_p threshold
|
# Calculate the min_p threshold
|
||||||
scaled_min_p = top_logprobs + math.log(min_p)
|
scaled_min_p = top_logprobs + math.log(min_p)
|
||||||
@ -163,9 +163,9 @@ def min_p_sampling(
|
|||||||
# Create pool of tokens with probability less than scaled min_p
|
# Create pool of tokens with probability less than scaled min_p
|
||||||
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
|
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
|
||||||
|
|
||||||
# Return sampled token
|
# Return sampled tokens
|
||||||
sorted_token = mx.random.categorical(selected_logprobs)
|
sorted_tokens = mx.random.categorical(selected_logprobs, axis=-1)[:, None]
|
||||||
return sorted_indices[sorted_token]
|
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
|
||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
@ -185,7 +185,7 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
|||||||
|
|
||||||
# sort probs in ascending order
|
# sort probs in ascending order
|
||||||
sorted_indices = mx.argsort(probs, axis=-1)
|
sorted_indices = mx.argsort(probs, axis=-1)
|
||||||
sorted_probs = probs[..., sorted_indices.squeeze(0)]
|
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=-1)
|
||||||
|
|
||||||
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
|
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
|
||||||
|
|
||||||
@ -196,10 +196,8 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
|||||||
0,
|
0,
|
||||||
)
|
)
|
||||||
|
|
||||||
sorted_token = mx.random.categorical(mx.log(top_probs))
|
sorted_tokens = mx.random.categorical(mx.log(top_probs), axis=-1)[:, None]
|
||||||
token = sorted_indices.squeeze(0)[sorted_token]
|
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
|
||||||
|
|
||||||
return token
|
|
||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
|
@ -114,6 +114,33 @@ def convert_chat(messages: List[dict], role_mapping: Optional[dict] = None):
|
|||||||
return prompt.rstrip()
|
return prompt.rstrip()
|
||||||
|
|
||||||
|
|
||||||
|
def process_message_content(messages):
|
||||||
|
"""
|
||||||
|
Convert message content to a format suitable for `apply_chat_template`.
|
||||||
|
|
||||||
|
The function operates on messages in place. It converts the 'content' field
|
||||||
|
to a string instead of a list of text fragments.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message_list (list): A list of dictionaries, where each dictionary may
|
||||||
|
have a 'content' key containing a list of dictionaries with 'type' and
|
||||||
|
'text' keys.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the 'content' type is not supported or if 'text' is missing.
|
||||||
|
|
||||||
|
"""
|
||||||
|
for message in messages:
|
||||||
|
content = message["content"]
|
||||||
|
if isinstance(content, list):
|
||||||
|
text_fragments = [
|
||||||
|
fragment["text"] for fragment in content if fragment["type"] == "text"
|
||||||
|
]
|
||||||
|
if len(text_fragments) != len(content):
|
||||||
|
raise ValueError("Only 'text' content type is supported.")
|
||||||
|
message["content"] = "".join(text_fragments)
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class PromptCache:
|
class PromptCache:
|
||||||
cache: List[Any] = field(default_factory=list)
|
cache: List[Any] = field(default_factory=list)
|
||||||
@ -591,8 +618,10 @@ class APIHandler(BaseHTTPRequestHandler):
|
|||||||
self.request_id = f"chatcmpl-{uuid.uuid4()}"
|
self.request_id = f"chatcmpl-{uuid.uuid4()}"
|
||||||
self.object_type = "chat.completion.chunk" if self.stream else "chat.completion"
|
self.object_type = "chat.completion.chunk" if self.stream else "chat.completion"
|
||||||
if self.tokenizer.chat_template:
|
if self.tokenizer.chat_template:
|
||||||
|
messages = body["messages"]
|
||||||
|
process_message_content(messages)
|
||||||
prompt = self.tokenizer.apply_chat_template(
|
prompt = self.tokenizer.apply_chat_template(
|
||||||
body["messages"],
|
messages,
|
||||||
body.get("tools", None),
|
body.get("tools", None),
|
||||||
add_generation_prompt=True,
|
add_generation_prompt=True,
|
||||||
)
|
)
|
||||||
|
@ -94,6 +94,7 @@ def linear_to_lora_layers(
|
|||||||
"phimoe",
|
"phimoe",
|
||||||
"gemma",
|
"gemma",
|
||||||
"gemma2",
|
"gemma2",
|
||||||
|
"helium",
|
||||||
"starcoder2",
|
"starcoder2",
|
||||||
"cohere",
|
"cohere",
|
||||||
"cohere2",
|
"cohere2",
|
||||||
|
@ -398,8 +398,9 @@ def speculative_generate_step(
|
|||||||
quantize_cache_fn(cache)
|
quantize_cache_fn(cache)
|
||||||
|
|
||||||
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
logprobs = logits - mx.logsumexp(logits, keepdims=True)
|
||||||
y = sampler(logprobs).squeeze(0)
|
logprobs = logprobs.squeeze(0)
|
||||||
return y, logprobs.squeeze(0)
|
y = sampler(logprobs)
|
||||||
|
return y, logprobs
|
||||||
|
|
||||||
def _prefill(model, cache, y):
|
def _prefill(model, cache, y):
|
||||||
while y.size > prefill_step_size:
|
while y.size > prefill_step_size:
|
||||||
|
@ -28,6 +28,12 @@ class TestSampleUtils(unittest.TestCase):
|
|||||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
token = top_p_sampling(logits, 0.95, temperature).item()
|
||||||
self.assertTrue(token in (1, 2, 3))
|
self.assertTrue(token in (1, 2, 3))
|
||||||
|
|
||||||
|
# Batch mode works
|
||||||
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||||
|
logits = mx.log(probs)
|
||||||
|
tokens = top_p_sampling(logits, 0.5, temperature)
|
||||||
|
self.assertEqual(tokens.tolist(), [0, 1])
|
||||||
|
|
||||||
def test_min_p_sampling(self):
|
def test_min_p_sampling(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
@ -42,6 +48,12 @@ class TestSampleUtils(unittest.TestCase):
|
|||||||
token = min_p_sampling(logits, 0.05)
|
token = min_p_sampling(logits, 0.05)
|
||||||
self.assertTrue(token in (0, 3))
|
self.assertTrue(token in (0, 3))
|
||||||
|
|
||||||
|
# Batch mode works
|
||||||
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||||
|
logits = mx.log(probs)
|
||||||
|
tokens = min_p_sampling(logits, 0.7)
|
||||||
|
self.assertEqual(tokens.tolist(), [0, 1])
|
||||||
|
|
||||||
def test_top_k_sampling(self):
|
def test_top_k_sampling(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
@ -80,6 +80,29 @@ class TestServer(unittest.TestCase):
|
|||||||
self.assertIn("id", response_body)
|
self.assertIn("id", response_body)
|
||||||
self.assertIn("choices", response_body)
|
self.assertIn("choices", response_body)
|
||||||
|
|
||||||
|
def test_handle_chat_completions_with_content_fragments(self):
|
||||||
|
url = f"http://localhost:{self.port}/v1/chat/completions"
|
||||||
|
chat_post_data = {
|
||||||
|
"model": "chat_model",
|
||||||
|
"max_tokens": 10,
|
||||||
|
"temperature": 0.7,
|
||||||
|
"top_p": 0.85,
|
||||||
|
"repetition_penalty": 1.2,
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "You are a helpful assistant."}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
|
||||||
|
],
|
||||||
|
}
|
||||||
|
response = requests.post(url, json=chat_post_data)
|
||||||
|
response_body = response.text
|
||||||
|
self.assertIn("id", response_body)
|
||||||
|
self.assertIn("choices", response_body)
|
||||||
|
|
||||||
def test_handle_models(self):
|
def test_handle_models(self):
|
||||||
url = f"http://localhost:{self.port}/v1/models"
|
url = f"http://localhost:{self.port}/v1/models"
|
||||||
response = requests.get(url)
|
response = requests.get(url)
|
||||||
|
Loading…
Reference in New Issue
Block a user