mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 19:06:37 +08:00
FLUX: move dataset to single file
This commit is contained in:
parent
1252536b4b
commit
b22611d2a9
@ -15,103 +15,7 @@ from mlx.utils import tree_flatten, tree_map, tree_reduce
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from flux import FluxPipeline
|
from flux import FluxPipeline, load_dataset
|
||||||
|
|
||||||
|
|
||||||
class FinetuningDataset:
|
|
||||||
def __init__(self, flux, args):
|
|
||||||
self.args = args
|
|
||||||
self.flux = flux
|
|
||||||
self.dataset_base = Path(args.dataset)
|
|
||||||
data_file = self.dataset_base / "train.jsonl"
|
|
||||||
if not data_file.exists():
|
|
||||||
raise ValueError(f"The fine-tuning dataset 'train.jsonl' was not found in the '{args.dataset}' path.")
|
|
||||||
with open(data_file, "r") as fid:
|
|
||||||
self.data = [json.loads(l) for l in fid]
|
|
||||||
|
|
||||||
self.latents = []
|
|
||||||
self.t5_features = []
|
|
||||||
self.clip_features = []
|
|
||||||
|
|
||||||
def _random_crop_resize(self, img):
|
|
||||||
resolution = self.args.resolution
|
|
||||||
width, height = img.size
|
|
||||||
|
|
||||||
a, b, c, d = mx.random.uniform(shape=(4,), stream=mx.cpu).tolist()
|
|
||||||
|
|
||||||
# Random crop the input image between 0.8 to 1.0 of its original dimensions
|
|
||||||
crop_size = (
|
|
||||||
max((0.8 + 0.2 * a) * width, resolution[0]),
|
|
||||||
max((0.8 + 0.2 * a) * height, resolution[1]),
|
|
||||||
)
|
|
||||||
pan = (width - crop_size[0], height - crop_size[1])
|
|
||||||
img = img.crop(
|
|
||||||
(
|
|
||||||
pan[0] * b,
|
|
||||||
pan[1] * c,
|
|
||||||
crop_size[0] + pan[0] * b,
|
|
||||||
crop_size[1] + pan[1] * c,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Fit the largest rectangle with the ratio of resolution in the image
|
|
||||||
# rectangle.
|
|
||||||
width, height = crop_size
|
|
||||||
ratio = resolution[0] / resolution[1]
|
|
||||||
r1 = (height * ratio, height)
|
|
||||||
r2 = (width, width / ratio)
|
|
||||||
r = r1 if r1[0] <= width else r2
|
|
||||||
img = img.crop(
|
|
||||||
(
|
|
||||||
(width - r[0]) / 2,
|
|
||||||
(height - r[1]) / 2,
|
|
||||||
(width + r[0]) / 2,
|
|
||||||
(height + r[1]) / 2,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Finally resize the image to resolution
|
|
||||||
img = img.resize(resolution, Image.LANCZOS)
|
|
||||||
|
|
||||||
return mx.array(np.array(img))
|
|
||||||
|
|
||||||
def encode_images(self):
|
|
||||||
"""Encode the images in the latent space to prepare for training."""
|
|
||||||
self.flux.ae.eval()
|
|
||||||
for sample in tqdm(self.data, desc="encode images"):
|
|
||||||
input_img = Image.open(self.dataset_base / sample["image"])
|
|
||||||
for i in range(self.args.num_augmentations):
|
|
||||||
img = self._random_crop_resize(input_img)
|
|
||||||
img = (img[:, :, :3].astype(self.flux.dtype) / 255) * 2 - 1
|
|
||||||
x_0 = self.flux.ae.encode(img[None])
|
|
||||||
x_0 = x_0.astype(self.flux.dtype)
|
|
||||||
mx.eval(x_0)
|
|
||||||
self.latents.append(x_0)
|
|
||||||
|
|
||||||
def encode_prompts(self):
|
|
||||||
"""Pre-encode the prompts so that we don't recompute them during
|
|
||||||
training (doesn't allow finetuning the text encoders)."""
|
|
||||||
for sample in tqdm(self.data, desc="encode prompts"):
|
|
||||||
t5_tok, clip_tok = self.flux.tokenize([sample["prompt"]])
|
|
||||||
t5_feat = self.flux.t5(t5_tok)
|
|
||||||
clip_feat = self.flux.clip(clip_tok).pooled_output
|
|
||||||
mx.eval(t5_feat, clip_feat)
|
|
||||||
self.t5_features.append(t5_feat)
|
|
||||||
self.clip_features.append(clip_feat)
|
|
||||||
|
|
||||||
def iterate(self, batch_size):
|
|
||||||
xs = mx.concatenate(self.latents)
|
|
||||||
t5 = mx.concatenate(self.t5_features)
|
|
||||||
clip = mx.concatenate(self.clip_features)
|
|
||||||
mx.eval(xs, t5, clip)
|
|
||||||
n_aug = self.args.num_augmentations
|
|
||||||
while True:
|
|
||||||
x_indices = mx.random.permutation(len(self.latents))
|
|
||||||
c_indices = x_indices // n_aug
|
|
||||||
for i in range(0, len(self.latents), batch_size):
|
|
||||||
x_i = x_indices[i : i + batch_size]
|
|
||||||
c_i = c_indices[i : i + batch_size]
|
|
||||||
yield xs[x_i], t5[c_i], clip[c_i]
|
|
||||||
|
|
||||||
|
|
||||||
def generate_progress_images(iteration, flux, args):
|
def generate_progress_images(iteration, flux, args):
|
||||||
@ -346,7 +250,7 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
|
|
||||||
print("Create the training dataset.", flush=True)
|
print("Create the training dataset.", flush=True)
|
||||||
dataset = FinetuningDataset(flux, args)
|
dataset = load_dataset(flux, args)
|
||||||
dataset.encode_images()
|
dataset.encode_images()
|
||||||
dataset.encode_prompts()
|
dataset.encode_prompts()
|
||||||
guidance = mx.full((args.batch_size,), args.guidance, dtype=flux.dtype)
|
guidance = mx.full((args.batch_size,), args.guidance, dtype=flux.dtype)
|
||||||
|
107
flux/flux/datasets.py
Normal file
107
flux/flux/datasets.py
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
class Dataset:
|
||||||
|
def __init__(self, flux, args):
|
||||||
|
self.args = args
|
||||||
|
self.flux = flux
|
||||||
|
self.dataset_base = Path(args.dataset)
|
||||||
|
data_file = self.dataset_base / "train.jsonl"
|
||||||
|
if not data_file.exists():
|
||||||
|
raise ValueError(f"The fine-tuning dataset 'train.jsonl' was not found in the '{args.dataset}' path.")
|
||||||
|
with open(data_file, "r") as fid:
|
||||||
|
self.data = [json.loads(l) for l in fid]
|
||||||
|
|
||||||
|
self.latents = []
|
||||||
|
self.t5_features = []
|
||||||
|
self.clip_features = []
|
||||||
|
|
||||||
|
def _random_crop_resize(self, img):
|
||||||
|
resolution = self.args.resolution
|
||||||
|
width, height = img.size
|
||||||
|
|
||||||
|
a, b, c, d = mx.random.uniform(shape=(4,), stream=mx.cpu).tolist()
|
||||||
|
|
||||||
|
# Random crop the input image between 0.8 to 1.0 of its original dimensions
|
||||||
|
crop_size = (
|
||||||
|
max((0.8 + 0.2 * a) * width, resolution[0]),
|
||||||
|
max((0.8 + 0.2 * a) * height, resolution[1]),
|
||||||
|
)
|
||||||
|
pan = (width - crop_size[0], height - crop_size[1])
|
||||||
|
img = img.crop(
|
||||||
|
(
|
||||||
|
pan[0] * b,
|
||||||
|
pan[1] * c,
|
||||||
|
crop_size[0] + pan[0] * b,
|
||||||
|
crop_size[1] + pan[1] * c,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Fit the largest rectangle with the ratio of resolution in the image
|
||||||
|
# rectangle.
|
||||||
|
width, height = crop_size
|
||||||
|
ratio = resolution[0] / resolution[1]
|
||||||
|
r1 = (height * ratio, height)
|
||||||
|
r2 = (width, width / ratio)
|
||||||
|
r = r1 if r1[0] <= width else r2
|
||||||
|
img = img.crop(
|
||||||
|
(
|
||||||
|
(width - r[0]) / 2,
|
||||||
|
(height - r[1]) / 2,
|
||||||
|
(width + r[0]) / 2,
|
||||||
|
(height + r[1]) / 2,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Finally resize the image to resolution
|
||||||
|
img = img.resize(resolution, Image.LANCZOS)
|
||||||
|
|
||||||
|
return mx.array(np.array(img))
|
||||||
|
|
||||||
|
def encode_images(self):
|
||||||
|
"""Encode the images in the latent space to prepare for training."""
|
||||||
|
self.flux.ae.eval()
|
||||||
|
for sample in tqdm(self.data, desc="encode images"):
|
||||||
|
input_img = Image.open(self.dataset_base / sample["image"])
|
||||||
|
for i in range(self.args.num_augmentations):
|
||||||
|
img = self._random_crop_resize(input_img)
|
||||||
|
img = (img[:, :, :3].astype(self.flux.dtype) / 255) * 2 - 1
|
||||||
|
x_0 = self.flux.ae.encode(img[None])
|
||||||
|
x_0 = x_0.astype(self.flux.dtype)
|
||||||
|
mx.eval(x_0)
|
||||||
|
self.latents.append(x_0)
|
||||||
|
|
||||||
|
def encode_prompts(self):
|
||||||
|
"""Pre-encode the prompts so that we don't recompute them during
|
||||||
|
training (doesn't allow finetuning the text encoders)."""
|
||||||
|
for sample in tqdm(self.data, desc="encode prompts"):
|
||||||
|
t5_tok, clip_tok = self.flux.tokenize([sample["prompt"]])
|
||||||
|
t5_feat = self.flux.t5(t5_tok)
|
||||||
|
clip_feat = self.flux.clip(clip_tok).pooled_output
|
||||||
|
mx.eval(t5_feat, clip_feat)
|
||||||
|
self.t5_features.append(t5_feat)
|
||||||
|
self.clip_features.append(clip_feat)
|
||||||
|
|
||||||
|
def iterate(self, batch_size):
|
||||||
|
xs = mx.concatenate(self.latents)
|
||||||
|
t5 = mx.concatenate(self.t5_features)
|
||||||
|
clip = mx.concatenate(self.clip_features)
|
||||||
|
mx.eval(xs, t5, clip)
|
||||||
|
n_aug = self.args.num_augmentations
|
||||||
|
while True:
|
||||||
|
x_indices = mx.random.permutation(len(self.latents))
|
||||||
|
c_indices = x_indices // n_aug
|
||||||
|
for i in range(0, len(self.latents), batch_size):
|
||||||
|
x_i = x_indices[i: i + batch_size]
|
||||||
|
c_i = c_indices[i: i + batch_size]
|
||||||
|
yield xs[x_i], t5[c_i], clip[c_i]
|
||||||
|
|
||||||
|
|
||||||
|
def load_dataset(flux, args):
|
||||||
|
return Dataset(flux, args)
|
Loading…
Reference in New Issue
Block a user