mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
a few examples
This commit is contained in:
80
mnist/jax_main.py
Normal file
80
mnist/jax_main.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import functools
|
||||
import time
|
||||
|
||||
import mnist
|
||||
|
||||
|
||||
def init_model(key, num_layers, input_dim, hidden_dim, output_dim):
|
||||
params = []
|
||||
layer_sizes = [hidden_dim] * num_layers
|
||||
for idim, odim in zip([input_dim] + layer_sizes, layer_sizes + [output_dim]):
|
||||
key, wk = jax.random.split(key, 2)
|
||||
W = 1e-2 * jax.random.normal(wk, (idim, odim))
|
||||
b = jnp.zeros((odim,))
|
||||
params.append((W, b))
|
||||
return params
|
||||
|
||||
|
||||
def feed_forward(params, X):
|
||||
for W, b in params[:-1]:
|
||||
X = jnp.maximum(X @ W + b, 0)
|
||||
W, b = params[-1]
|
||||
return X @ W + b
|
||||
|
||||
|
||||
def loss_fn(params, X, y):
|
||||
logits = feed_forward(params, X)
|
||||
logits = jax.nn.log_softmax(logits, 1)
|
||||
return -jnp.mean(logits[jnp.arange(y.size), y])
|
||||
|
||||
|
||||
@jax.jit
|
||||
def eval_fn(params, X, y):
|
||||
logits = feed_forward(params, X)
|
||||
return jnp.mean(jnp.argmax(logits, axis=1) == y)
|
||||
|
||||
|
||||
def batch_iterate(key, batch_size, X, y):
|
||||
perm = jax.random.permutation(key, y.size)
|
||||
for s in range(0, y.size, batch_size):
|
||||
ids = perm[s : s + batch_size]
|
||||
yield X[ids], y[ids]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
seed = 0
|
||||
num_layers = 2
|
||||
hidden_dim = 32
|
||||
num_classes = 10
|
||||
batch_size = 256
|
||||
num_epochs = 10
|
||||
learning_rate = 1e-1
|
||||
|
||||
# Load the data
|
||||
train_images, train_labels, test_images, test_labels = mnist.mnist()
|
||||
|
||||
# Load the model
|
||||
key, subkey = jax.random.split(jax.random.PRNGKey(seed))
|
||||
params = init_model(
|
||||
subkey, num_layers, train_images.shape[-1], hidden_dim, num_classes
|
||||
)
|
||||
|
||||
loss_and_grad_fn = jax.jit(jax.value_and_grad(loss_fn))
|
||||
update_fn = jax.jit(
|
||||
functools.partial(jax.tree_map, lambda p, g: p - learning_rate * g)
|
||||
)
|
||||
|
||||
for e in range(num_epochs):
|
||||
tic = time.perf_counter()
|
||||
key, subkey = jax.random.split(key)
|
||||
for X, y in batch_iterate(subkey, batch_size, train_images, train_labels):
|
||||
loss, grads = loss_and_grad_fn(params, X, y)
|
||||
params = update_fn(params, grads)
|
||||
accuracy = eval_fn(params, test_images, test_labels)
|
||||
toc = time.perf_counter()
|
||||
print(
|
||||
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"
|
||||
f" Time {toc - tic:.3f} (s)"
|
||||
)
|
||||
Reference in New Issue
Block a user