mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-11-02 12:38:10 +08:00
a few examples
This commit is contained in:
88
mnist/torch_main.py
Normal file
88
mnist/torch_main.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import argparse
|
||||
import torch
|
||||
import time
|
||||
|
||||
import mnist
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
|
||||
super().__init__()
|
||||
layer_sizes = [hidden_dim] * num_layers
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(idim, odim)
|
||||
for idim, odim in zip(
|
||||
[input_dim] + layer_sizes, layer_sizes + [output_dim]
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.layers[0](x)
|
||||
for l in self.layers[1:]:
|
||||
x = l(x.relu())
|
||||
return x
|
||||
|
||||
|
||||
def loss_fn(model, X, y):
|
||||
logits = model(X)
|
||||
return torch.nn.functional.cross_entropy(logits, y)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def eval_fn(model, X, y):
|
||||
logits = model(X)
|
||||
return torch.mean((logits.argmax(-1) == y).float())
|
||||
|
||||
|
||||
def batch_iterate(batch_size, X, y, device):
|
||||
perm = torch.randperm(len(y), device=device)
|
||||
for s in range(0, len(y), batch_size):
|
||||
ids = perm[s : s + batch_size]
|
||||
yield X[ids], y[ids]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Train a simple MLP on MNIST with PyTorch.")
|
||||
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.gpu:
|
||||
torch.set_num_threads(1)
|
||||
device = "cpu"
|
||||
else:
|
||||
device = "mps"
|
||||
seed = 0
|
||||
num_layers = 2
|
||||
hidden_dim = 32
|
||||
num_classes = 10
|
||||
batch_size = 256
|
||||
num_epochs = 10
|
||||
learning_rate = 1e-1
|
||||
|
||||
# Load the data
|
||||
def to_tensor(x):
|
||||
if x.dtype != "uint32":
|
||||
return torch.from_numpy(x).to(device)
|
||||
else:
|
||||
return torch.from_numpy(x.astype(int)).to(device)
|
||||
|
||||
train_images, train_labels, test_images, test_labels = map(to_tensor, mnist.mnist())
|
||||
|
||||
# Load the model
|
||||
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes).to(device)
|
||||
opt = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.0)
|
||||
|
||||
for e in range(num_epochs):
|
||||
tic = time.perf_counter()
|
||||
for X, y in batch_iterate(batch_size, train_images, train_labels, device):
|
||||
opt.zero_grad()
|
||||
loss_fn(model, X, y).backward()
|
||||
opt.step()
|
||||
accuracy = eval_fn(model, test_images, test_labels)
|
||||
toc = time.perf_counter()
|
||||
print(
|
||||
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"
|
||||
f" Time {toc - tic:.3f} (s)"
|
||||
)
|
||||
Reference in New Issue
Block a user